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ABSTRACT 

The magnetohydrodynamic (MHD) induction machine is analyzed to determine the ter- 
minal properties, the power flow relations, and the steady-state performance charac- 
teristics. The theory for a machine of infinite length and width is first developed, 
including velocity-profile effects. Solutions are obtained for laminar (Hartmann) flow in 
a narrow channel, and numerical results are presented for the arbitrary-channel case. 
Turbulent flow is treated by using a boundary-layer theory. The influence of finite 
length on generator performance is also considered. In each case considered, results 
are presented in terms of the electrical efficiency and the power density. 

The performance and design implications of the results are discussed for several 
examples of MHD induction generators operated on liquid-metal flows.   We conclude 
that over-all efficiencies in the range 70-85% may be attained in practical high-power 
generators, but that it may not be possible to achieve the lower efficiency limit at 
power levels below approximately 1 megawatt. 
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NOMENCLATURE 

Rationalized mks units are used.   An arrow above a symbol indicates a vector, 

underlining indicates complex amplitude; * , complex conjugate; II , magnitude or abso- 

lute value; <>, time average; and a bar above, space average.    The common subscripts 

are f, c, e, i, and w for fluid, core, exciting winding, insulator, and channel-wall variables; 

and x, y, and z for the components of a vector.    Variables used in a single section may 

not be included. 

Symbol Definition 

A Vector potential, Eq.  6 

A» Vector potential at center of channel 

Afo ' Afo^fNIa 

B Magnetic flux density 

D. Hydraulic diameter, Eq.   164 

DF Normalized derivative of vector potential, Eq.   149 

E Electric field intensity 

F Normalized vector potential. A./A. 

Fp. Derating factor for vector potential.  Appendices C and G 

F_ Profile factor for P   , Eq.   141 m m'     ^ 
F Profile factor for P , Eq.   142 r r 
FOR Force multiplier, Eq,   162 

I Exciting-current amplitude 

J Current density 

K Surface current density 

L Normalization constant for coil inductance,  Eq.  49 

L Parallel-equivalent circuit inductance of coil 

L Series-equivalent circuit inductance of coil 

L Series-equivalent circuit inductance of coil for odd excitation 

M Hartmann number, Eq.   126 

N Turns-density amplitude 

P Power dissipated in core 

P Power dissipated in exciting winding 

P Mechanical power output 

P Normalization constant for powers, Eq.   70 

P Power dissipated in fluid because of finite conductivity 

P Power supplied to fluid by exciting system s 
P Power dissipated in fluid owing to viscosity 

Q Quality factor 

Q Volume flow rate 
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R Internal resistance of exciting coil, Eq.  50 

R Refolds number, R    = pvD./rj 

RM Magnetic Reynolds number in fluid, RM - (j.fafv /k 

RM Magnetic Reynolds number in core R^    = ß a v /k 

RM„ Magnetic Reynolds number based on fluid velocity, Rjyrp = Mf^fv/k 

RM Magnetic Reynolds number for slit-channel machine, 

RMü! = (T+7)RM 
a 

R Normalization constant for coil resistance, Eq. 49 

R Parallel-equivalent circuit resistance of coil 

R Series-equivalent circuit resistance of coil 

R Series-equivalent circuit resistance of coil for odd excitation so 
S Poynting's vector 

V Coil terminal voltage 

X Leakage reactance of exciting coil 

Z Coil impedance 

a Channel half-height 

b Thickness of exciting plate 

c Machine width 

e Efficiency 

e Generator efficiency 
g J 

e Pump efficiency 

f Friction factor, Eq. D. 18 

i Order of pole for finite-length solution 

i Unit vector 

J N^T- 
k Wave number 

n Length of machine of direction of fluid flow in wavelengths 

p Pressure 

p Transform variable (Section VI) 

p Electromagnetic part of the pressure 

p Time-average pressure gradient 

q Electric charge density 

s Slip based on phase velocity, s = —— 
s 

t Time 

u Normalized fluid velocity, v/v 

v Fluid velocity 

v Field phase velocity, v   =-r- 

x Axis in direction of fluid flow 

y Axis transverse to flow 

xii 



Normalized axis, y/a 

y1 y+ a 

z Axis in direction of current flow 

a Ratio of channel width to excitation wavelength, a = ak 
2 

y Spatial constant in fluid, y     = 1 + jsRM 

Ö Spatial constant in core, ö    = 1 + jRM 

Ö Boundary layer thickness (sections 5, 4, 5.5) 

Ö Displacement thickness, Eq.   178 

5 Electrical skin depth (Section III) 

€ Permittivity 

TJ Absolute viscosity 

6 Power-factor angle 

K Ratio of fluid to core permeability, f = TT 

A Wavelength 

fi Permeability 

li Permeability of free space 

p Fluid mass density 

a Electrical conductivity 

a Surface change density (Appendix A) 

0 Surface conductivity 

T Shear stress caused by fluid viscosity 

T Wall shear stress o 
(/) Scalar potential, Eq.  7 

0) Frequency in radians per second 

'7 Vector differential operator 

A. A. = 2 for i^O, and 1 for i = 0 
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1.   INTRODUCTION 

1.1   DESCRIPTION 

The MHD induction machine, shown schematically in Fig.  1, consists of a channel 

containing a flowing electrically conducting fluid and a set of exciting windings that 

produce a traveling magnetic field.   Currents are induced in the fluid because of the 

relative motion between the field and fluid.    The force of electrical origin,  on account 

of the interaction of the magnetic field and the fluid current, is always in a direction 

such that the fluid tends to travel at the same velocity as the field.   If the fluid velocity 

v is less than the field phase velocity v , the force accelerates the fluid, energy is 

transferred to the fluid, and the device acts as a pump or accelerator.    If v is greater 

than v , the force opposes the motion and the machine is a generator, converting mech- 

anical energy to electrical energy.   If v and v   are in opposite directions, the machine 

is a flow damper, absorbing both mechanical and electrical energy.   At synchronous 

speed, v = v , there is no relative motion of the fluid and field, and consequently no s 
interaction. 

Phase 1 

.Fluid Flow 

Fig.  1,   Flat linear MHD induction machine 

*Manuscript released by authors May 1,  1965 for publication as an RTD Technical 
Documentary Report. 



There is no direct electrical connection to the fluid,  so that all fluid currents are 

due to a combination of transformer and motional induction.    The effect of the fluid is 

detected from the electrical terminals only by the change in the electrical impedance, 

or equivalently,  the electromagnetic fields.    If there is to be an appreciable energy 

transfer relative to the stored magnetic energy, which is required for high efficiency, 

the induced magnetic field attributable to the fluid currents must be comparable with 

the applied magnetic field.    Approximate solutions for the magnetic field or complete 

neglect of the induced field are not valid.    The real part of the terminal impedance, 

representing the energy transfer to or from mechanical form,  is negative for operation 

as a generator.    The imaginary part is always inductive,  requiring external capacitive 

energy storage. 
12 The description above is exact for a conventional rotation induction machine.   ' 

Consequently,  previous knowledge of the rotating version can be applied to the MHD 

version, with appropriate modifications for the fluid and geometry.    The fluid is more 

complex because the velocity is not a constant,and there are additional losses resulting 
3 from viscosity.    The geometry is similar to linear induction motors    or induction 

motors with arc-shaped stators (a stator occupying only a fraction of the rotor pe- 
4 riphery  ),  and shares with them the distortion of the electromagnetic fields at the en- 

trance and exit regions to the traveling-field structure.    The MHD version is both hard- 

er to analyze and less efficient. 

1. 2   FIELD INTERACTION 

Examination of the electromagnetic fields provides a better picture of the principles 

of operation of the MHD induction machine.    The traveling magnetic field is broken up 

into two components, the applied field set up by the exciting winding, and the reaction 

field resulting from the induced currents in the fluid.   The reaction field, opposing the 

change in the applied field, is a traveling wave displaced in space and time from the 

applied field.   The relative location of the two waves explains both the direction of the 

force on the fluid and the negative resistance obtained for generator operation. 

First consider the vector diagram for a series RL circuit with sinusoidal excitation 

(Fig. 2) as an aid in explaining the phase differences that arise.   The total voltage is the 

sum of the voltages across the resistor and inductor.   That across the resistor is in 

phase with the current, while the inductor voltage, 

VL   =   jcoU. (1) 

leads the current by 90°, with complex notation used.   The total voltage leads the 

current by an angle less than 90°,  and the magnetic field is in phase with the current. 

If the total voltage and current are more than 90° out of phase, the apparent resistance 

is negative. 



juLI     k- 

RI 

I, B 

Fig. 2.   Vector diagram for a series RL circuit. 

The reaction field set up by the fluid must be determined in the frame fixed with 

respect to the fluid.   For pump operation, v < v , the applied field resulting from the 

exciting winding,  as seen by the fluid,  moves in the positive x-direction with the ve- 

locity v    - v (Fig. 3).   The time rate of change of the applied field causes an induced s 
voltage in the fluid.    If inductive effects in the fluid are neglected,  the induced current 

is in phase with the induced voltage and creates a magnetic field to oppose the change in 

the applied magnetic field.   The fluid magnetic field must be a maximum when the time 

rate of change of the applied field is a maximum or, as shown in Fig.  3, it lags the ap- 

plied field by 90° in space.   Of course, the inductive effects associated with the fluid 

are not negligible,  so that the current and reaction field lag the applied field by more 

than 90° but less than 180°. 

Applied Field,   B, 
Ä    Vv        Fluid 

Poles 

Exciting 
Poles 

Fig. 3.   Magnetic fields seen by the fluid. 

The same result is obtained by thinking of the fluid as a short-circuited series RL 

circuit with an induced voltage that is due to the time rate of change of the applied 

magnetic field (Fig. 4) .   The induced voltage leads the applied field B   by 90° in time 

(Fig.  5).    The current lags the voltage,  because of the inductance, as in Fig. 2, and is 

180° out of phase because it flows out of the positive terminal of the inductor (the 



induced voltage is internal to the inductance).   Thus the reaction field B   lags the 

applied field by 90° - 180° intime.   For an observer fixed with respect to the fluid, 

the time lag is equivalent to the space lag obtained above. 

!i 
/ 

/ 
/ 

^             i 

../ r      r 

Ba 

Fig. 4.   Equivalent circuit for fluid. Fig.  5.    Vector diagram for fluid. 

Now the force and energy transfer for pump operation can be explained.   The force 

between the two magnetic fields is in the direction to align them; it pulls the fluid along 

with the field or accelerates it.   This is seen from the equivalent magnetic poles,  shown 

in Fig. 3.   There is an equal and opposite force on the stationary exciting system.   The 

fluid magnetic field in the fixed frame still appears to lag the applied field by more 

than 90° in space, or, as seen by a fixed coil, by the same angle in time.   The vector 

diagram for the pump (Fig.  6) shows that B   is in the third quadrant and its voltage V , 

leading the flux by 90°, is in the fourth.   The fluid interaction appears as an additional 

positive resistance in the exciting system and absorbs power. 

Fig. 6.    Vector diagram for pump operation. 



For the generator, v > v , there is only one change.   The applied field, as seen by 

the fluid,  moves in the negative x-direction with velocity v - v  .    The reaction field still s 
lags the applied field,  but now it is on the opposite side of the applied field.    Therefore 

the force to align the fields acts in the opposite direction, as required for generator 

operation.    The reaction field in the fixed frame is also on the opposite side of the ap- 

plied field,  or now leads it by an angle of 90° - 180°.   As shown in Fig.  7, this puts the 

reaction field in the second quadrant and itp voltage in the third.    The induced voltage 

appears from the coil terminals as a negative resistance,  or supplies power to the 

source. 

(-R)I 

l'*o 

Fig.  7,    Vector diagram for generator operation. 

1,3   HISTORICAL BACKGROUND 

The earliest application of MHD was Faraday's attempt, in 1831, to measure the 
5 

voltage induced in the River Thames by its motion in the earth's magnetic field.   The 

measurement was unsuccessful, because of polarization of the electrodes.   Northrup, 

from 1906 and 1910,  studied experimentally the interaction of a current and a magnetic 

field in a liquid conductor.   He found that the passage of a current through mercury in 

an open tray caused a V-shaped depression to form in the center.    Northrup mentions 

the use of this phenomenon for measuring large currents and achieving motion without 

the use of brushes or slip rings.    With the work of Kolin, in 1936, the electromagnetic 

flowmeter (an open-circuited conduction generator producing a voltage proportional to 

flow rate) became the first important application of MHD.   It was originally applied to 

blood-flow measurements, and later to the flow of liquid metals and other conducting 
8 9 fluids, using conduction devices.' 

An induction pump was first proposed by Chubb,    in 1915, to pump a liquid metal 

by means of a rotating magnetic field in a spiral-channel induction pump.   A refriger- 

ator using sodium-potassium and a gas with an annular induction pump for the motor 



was suggested, in 1928, by Einstein and Szilard.      They also suggested an annular 

traveling-field pump for use with alkali metals. 

The development of the electromagnetic pump proceeded slowly until the need for 

pumps to handle liquid metals for cooling nuclear reactors created considerable inter- 
12  13 14   15 est.   '       The theory of the conduction pump (and generator) is well understood,   ' 

and effort has been devoted to consideration of end effects,  boundary layers, turbulence, 

and compressibility.    The theory of the induction pump,  since exact solutions are not 

possible, is not as well developed.    Design procedures based on a combination of theory, 

experiment, and experience from conventional rotating induction machines have been 
1fi 17 1 R 

used with moderate success by Baker,    Barnes,    and Watt.      This basic analysis has 
19  20 been extended by a number of authors    '        to include approximate velocity profiles and 

more detailed experimental and theoretical results, but with no apparent improvement 

in pump design.   The efficiencies obtained are all under 50%, too low to be acceptable 

if the pump were to be used for power generation.    Both conduction and induction pumps 
21  22 ~ are commercially available.   ' 

23 Okhremenko     has considered induction pumps in more detail, including:   velocity 

profiles; the fluid entrance to a uniform traveling field; and the transient in the fluid 

velocity when the pump is turned on.   His velocity-profile solution is approximate, as- 

suming the profile does not modify the field; and he uses the first two terms of an un- 

specified power series for the profile, corresponding to the slit-channel solution of 

section 4. 3 plus a correction term.   The numerical solution of section 4. 5 is probably 

just as simple.   His entrance solution is for the velocity profile assuming a step in the 

electromagnetic field, whereas the important effect is the deviation in the electromag- 

netic field from a step. 
24 Two theoretical studies lead up to the present investigation.   Harris      studied 

induction-driven flows, obtaining the approximate one-dimensional velocity profile when 

the channel height is much less than the pole spacing (a slit channel).   He also investi- 

gated the power flow in the induction machine and extended his work on turbulence to 
25 induction-driven flows.    Penhune     examined the internal behavior of laminar induction- 

driven flows in more detail.   He converted the nonlinear differential equations to an 

infinite set of coupled linear differential equations and solved them approximately by 

numerical methods. -Velocity and magnetic field profiles were obtained, but power flow 

and terminal properties of the machine were not considered. 

Concurrently with this theoretical study, two experiments have been undertaken. 

Reid,    using a coil system designed by Hoag     for a plasma pump, measured a small 

interaction with eutectic sodium-potassium alloy (NaK).   A new machine, designed 

specifically for use with the NaK flow loop by Porter,    is now under construction.    It is 

expected to give a larger interaction and reasonable confirmation to the theoretical 

results. 



Considerable attention has been devoted recently to induction generators, primarily 

aimed at using plasmas.    Most of the analyses are valid only for sRM « 1, which will be 

shown to be an impractical operating regime for energy conversion, and are restricted 

to an inviscid and incompressible fluid.    Also, they have not determined the machine 

properties   and  the   conditions  for   best   operations,   which   clearly   show  that   a 

plasma is not practical in an induction generator unless higher conductivities are 
29 obtainable. 

30 Fischbeck     obtained an approximate solution for an incompressible, inviscid 

fluid in a slit channel,  and two solutions for different models of a compressible fluid. 

He did not sufficiently consider the implications of his assumptions or the interpretation 
31 of his results.    Fanucci et al.     have made a comprehensive study of the induction 

  32 generator, including an experiment.      The theory considers compressibility and finite 

length,  but not the basic properties necessary to design a practical machine, and is 

restricted to sR-, « 1.    The experimental power flow was small. 
33 Lyons and Turcotte      have analyzed the induction pump, using sRM « 1 and as- 

suming a magnetic field that is an infinitely long,  exponentially damped sine wave, 

certainly a poor approximation to a machine of finite length.   Their results for a finite- 
34 length machine differ significantly from the present investigation.    Sudan     has treated 

the machine of finite length essentially as we have, but has not carried the interpreta- 
35 tion through.    Peschka,  Keim,  and Engeln      considered the finite-length machine,  but 

their results are also significantly different from the present study, and their paper 

does not include sufficient information to determine the source of this difference. 

Neuringer and Migotsky      have considered skin effect with odd excitation, and con- 

clude that skin effect is responsible for the presence of a peak in the power curves. 

This is treated in detail in section 3. 4, and shown to be due to the reaction field of the 
37 fluid but to differ from skin effect.    Lengyel     has considered a vortex-type generator 

geometry, using the usual inviscid incompressible fluid with a series solution in sR-.. 

1.4   OBJECT AND SCOPE OF THIS INVESTIGATION 

The objectives of this investigation are to extend the work of Harris and Penhune 

by providing a clear picture of the terminal properties of and power flow in the MHD 

induction machine based on practical fluid properties and machine parameters. The 

effects of velocity profiles, viscosity, the finite length of the machine, and the loss in 

setting up the excitation are included in the analysis. The scope is restricted to apply 

only to incompressible fluids. The analysis shows that liquid metals will provide rea- 

sonable efficiency and power density, but plasmas will not as the conductivity is too low. 

*sRM, the magnetic Reynolds number, based on the velocity difference v - v and the 
wavelength, indicates the magnitude of the field-fluid interaction.   The Sa.se sRM « 1 
means that the field induced in the fluid is negligible. 



The basic equations for the induction machine are developed in Section II without 

application to a specific model for the fluid.    Constant fluid velocity is considered in 

Section III, including a comparison of even and odd excitation and a discussion of un- 

balanced excitation.   The constant fluid velocity allows an analytical solution to be ob- 

tained.   This solution points out the major properties, the electromagnetic behavior, 

without consideration of the fluid.   This restriction is removed in Section IV and an ap- 

proximate solution is obtained for laminar flow.    The velocity profile may have a large 

♦effect on the machine performance, the effect depending on the parameters.    Turbulent 

flow is treated in Section V, but this is limited by the lack of experimental information. 

Boundary-layer theory presents a useful approach to handling turbulent flow. 

The machine of finite length is considered in Section VI.   The finite length 

decreases the power level of the machine,  but has little effect on the efficiency for a 

machine several wavelengths long.   The previous results are used in Section VII to 

examine the induction generator with practical fluid properties. 



II.    EQUATIONS OF INDUCTION-COUPLED FLOW 

2. 1   INTRODUCTION 

The basic theory used to determine the performance of the induction machine is 

developed here without application to a specific model for the fluid behavior.    Because 

of the coupled nonlinear partial differential equations that are obtained in section 2. 2, 

a general solution is impossible.    Thus, the material in the sequel is split into con- 

sideration of three successively more complicated fluid models: 

1. A constant fluid velocity, which uncouples the equations and allows an ana- 

lytical solution to be obtained. 

2. A laminar fluid flow, where approximate solutions are obtained by numerical 

integration of the differential equations. 

3. A turbulent fluid flow, where solutions are obtainable only by using approxi- 

mate equations. 

The basic model to be analyzed is shown in Fig.  8.   The average fluid flow is in 

the x-direction between two parallel exciting plates of infinite extent in the x- and 

z-directions spaced a distance 2a apart.   The region outside the plates is filled with 

y»a 

y=»-a 

Fig.  8.   The Model. 



a core of arbitrary permeability ß   and conductivity a ,   The exciting plates, separated 

from the fluid and core by insulators of infinitesimal thickness to prevent current flow 

in the y-direction,  are assumed thin so that they can be replaced by current sheets with 

a surface conductivity a   = a b, where b is the plate thickness, and a   the material con- 

ductivity.     The presence of the insulators,  as shown in Appendix A, allows the tangen- 

tial electric field to be discontinuous across the boundary because the insulators support 

a dipole charge layer.   The details of the excitation system are not considered. 

The exciting plates are driven by a current source that gives an even or symmetric 

surface current density 

K = i NI cos (wt - kx). (2) 

This represents a traveling current wave of amplitude NX, frequency w, and wavelength 

and velocity 

A=*£ (3) 

and 

vs=f' (4) 

The surface current is considered to be produced by a balanced two-phase system with 

turns densities N cos kx and N sin kx excited by currents I cos wt and I sin «t.   Only 
Q Q 

two-phase excitation is considered, since, as shown by White and Woodson,    an n-phase 

system can be reduced lo a two-phase equivalent.   Excitation with odd symmetry and 

unbalanced excitation are treated in sections 3. 5 and 3. 8 as direct extensions of the sym- 

metric, balanced case.   The machine of finite length, in which the coil system has ends 

and the surface current may have a different x-dependence, is treated in Section VI. 

2.2   EQUATIONS 

The equations to be solved are Maxwell's equations for the electromagnetic field 

with the usual MHD approximation which neglects displacement currents, and the 

Navier-Stokes   equation   (conservation-of-momentum)   for  the   incompressible   fluid. 

They are 

*An exciting winding of finite thickness is considered in Appendix C, and conducting 
channel walls and insulation in Appendix G. 
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(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 

(5g) 

(5h) 

jLt = permeability 

€ = permittivity 

or = electrical conductivity 

q = electric charge density 

7] = absolute viscosity 

V = vector differential operator 

Equation 5e is a consequence of neglecting displacement currents in Eq.  5a.   Equation 

5f serves solely to determine the required charge density,  since the other equations 

are sufficient to determine the fields.     Equations  5d and   5h are Ohm's law and con- 

servation of mass for the moving,  incompressible fluid. 

The analysis is simplified by the use of a vector potential A defined by 

VXB = /iJ 

V * B = 0 

VXE.-H 

7 = cr(E + 7 X B) 

V • 7= 0 

-   q 
V '  E = - 

p(    9t   + v ' V) v = - 

V '  v =   0 

where 

B = magnetic flux density 

E = electric field intensity 

J = current density 

v = fluid velocity 

P = pressure 

P = fluid mass density 

B = VX A (6) 

which satisfies Eq.  5b.   Equation 5c then becomes 

E=-V0-|f. (7) 

defining the scalar potential 0.   To complete the specification of the vector potential, 

its divergence is chosen to satisfy 

V A + /ICT 0 = 0, (8) 

^Equation 5f is used only in Appendix A to determine the surface charges on the fluid- 
insulator and excitation-insulator interfaces. 
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which uncouples the equations for the two potentials.    Substituting Eqs.  5d,   6,  and 7 

in Eq.  5a and using condition (8)   gives 

—♦ 

V2A    -   ßa$Y+ß(T(vXVXA)  =0.. (9) 

Equations 8 and 9 are sufficient to determine the potentials, except in Appendices A 

and B,  because the form chosen for A forces 0 to be zero. 

A third equation is required in Appendices A and B.    Taking the divergence of 

Eq.  5d and using Eq.  5e plus a vector identity gives 

V-  E = v •  (VX B)   -   B • (VXv) . (10) 

For an infinite-width machine v and B are both in the xy-plane and independent of z, 

so that the right-hand side of the equation is zero.    Using Eqs.  7 and 8 with V •  E = 0 

provides the required third equation, 

V2<j>   -   M^lf =   0, (11) 

without using Eq.  5f, as a consequence of neglecting displacement currents. 

The vector potential,  resulting solely from currents, is also assumed to be 

z-directed and independent of z.    Consequently, 

0 =  0, (12) 

from Eq.  8, for any material of nonzero conductivity.    The general case of retaining 

all three components of the vector potential is considered in Appendix B.   Obviously, 
39 the same fields must result, but the potentials are not unique,    as shown. 

The two resulting coupled nonlinear vector partial differential equations are 

Eq,  9 and 

p ( ^-  +  v •  V) v = - Vp + ?7V2v-i-(V2A) X(VXA), (13) 

obtained by writing J X B in terms of A.    A general solution is clearly impossible 

because of the nonlinear terms and two-way coupling, plus the difficulty in describing 

the fluid behavior.    For this reason, the theory is split into consideration of the three 

distinct fluid models mentioned in section 2.1. 

The analysis to follow will be restricted to consideration of an x-directed   velo- 

city depending on y but not time, 

v=T*xv(y). (14) 

12 



This means that the vector potential must have the same e^w   time dependence as the 

excitation,  since the time behavior of Eq. 9 has been linearized.    The electromagnetic 

equations are simplified by writing the vector potential in complex notation as 

A(x,y,t) = Re   j TzA(x. y)eJwt      , (15) 

in which underlining indicates complex amplitude, and A is in the z-direction and 

independent of z for a machine of infinite width.   In evaluating products it is necessary 

to take the real part before multiplying the terms together. 

The equations for the complex vector potential in the fluid and core, denoted by 

the subscripts f and c,  respectively,  are 

aAf 

V2Af-;iRMk2Af-Mf(V~0, (16a) 

and 

V2^ - j RMck2 ^ = 0. (16b) 

where 

MfVs R      =       - . (17a) 

and 

ß a v 
RMC 

=   -hP (17b) 

are the fluid and core magnetic Reynolds numbers based on synchronous speed and wave- 

length.    R-. is a partial measure of the magnitude of the field-fluid interaction; it is 

modified by the fluid motion.    It is appropriate to use a magnetic Reynolds number for 

the core because it moves relative to the field with a velocity v .   The fluid permeability s 
ju. must be equal to that of free space u, since there is no magnetic fluid of any 

importance. 

Equations 16a and 16b determine the form of the solution.    The constants of the 

solution come from the boundary conditions on the magnetic field; the electric field 

conditions serve solely to determine the surface charge and dipole layer densities on 

the insulators separating the exciting plates from the fluid and core, as shown in 

Appendix A.    The vector potential is symmetric, 

Af(x,y) = Af(x,  -y), (18) 
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from the symmetric excitation (excluding odd excitation); and the fields in the core 

must go to zero far from the machine, 

Ac (x,y)—•► Oas     y—>oo. (19) 

At the fluid-core interface the normal magnetic field is continuous,  and the discontinu- 

ity in the tangential magnetic field is proportional to the surface current.    In terms of 

the vector potential, these are 

A   = A     at y = ± a, (20)  f      c         ^ 

and 

aA. 8A 
J_ —     _    _1_       —     =±K(x)   aty=±a, (21) 
ß{      ay MC     9y 

where K(x)   is the complex amplitude of the exciting current. 

2.3   EXCITING-COIL TERMINAL VOLTAGE 

The electrical characteristics of the MHD induction machine are conveniently ex- 

pressed in terms of the impedance observed at the terminals of an exciting coil.    The 

impedance is obtained from the coil terminal voltage.    Poynting's theorem can also be 
40 -ikx used,    but only when the machine is of infinite length and the fields have the same e J 

dependence as the exciting system. 

The field equations are based on an infinite-width machine,  but the voltage for a 

finite-width machine is desired.   Care must be exercised in going from an infinite to a 

finite-width coil,  as shown in Fig.  9, to be sure that the fields and the voltage are not 

changed.   Initially, with no terminals, the surface current is assumed to be set up by a 

current source distributed in the winding.    With the distributed source there is no 

sealer potential 0    in the exciting winding, and the induced electric field is 

Eez = " .JwAf<x.y= a), (22) 

since the vector potential is continuous at y = a.    The total electric field in the exciting 

winding, the sum of the induced and distributed-source electric fields, must satisfy 

Ohm's law.    Thus, the distributed-source electric field is 

K 
E__ = jw Af(x,y = a)   + ^    . (23) sz s 
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(a) 

(b) 
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(c) 
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t 
gti 

-^ 
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Fig. 9.    Steps in calculating the coil terminal voltage. 

The voltage across a length c of the distributed source. 

AV (x) s 

z+c 

/ 
cK(x) 

Eszdz = JwcAf<x»y= a) +—^—■. 
(24) 

balances the sum of the induced voltage and the resistance drop in the winding. 

Since the x-component of the electric field is zero,  shorting wires can be added to 

make a coil of width c (Fig.  9b).    The oppositely directed currents in the adjacent wires 

cancel, so that there is no effect on the fields. 
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With a complete coil the distributed source can be concentrated in one of the 

shorting wires (Fig. 9c).    The current in the exciting sheet is the same,  but the electric 

field in the exciting sheet is changed by the addition of a scalar potential,  and a dipole 

charge layer is required on the insulator between the fluid and the exciting sheet.    There 

is an additional current in the fluid because of the time-variant charge on the insulator, 

but this is of the same order of magnitude as the displacement current and can be 

neglected.    The total current and the magnetic field are the same.    The voltage distribu- 

tion around the closed coil is changed by the addition of the conservative field, but the 

total source voltage remains the same,  balancing the induced voltage plus the resistance 

drop. 

Removing the concentrated source from the machine by two leads brought out close 

together (Fig.  9d) again leaves the same net current,  so that only the scalar potential is 

different.    The final step of going from an infinite-width to a finite-width machine does 

change the fields and terminal voltage,  because of the field distortion at the edges,  but 

the change is small if the width is large compared with a wavelength.    The effect of 

finite machine width is not considered. 

Thus far,  only one turn has been considered.   The traveling field is assumed to be 

produced by a two-phase winding,  as mentioned in section 2.1,  with the individual wires 

connected in series to form coils.    The coil terminal (source) voltage, the sum over all 

the wires (or integral over the turns density) of the source voltage across each wire 

AV ,  is s' 

/x+A / cos kx 

[AVs(x)]N "J I  dx. |25) 
sin kz ; 

for a coil one wavelength long; where cos kx and sin kx are for the two phases, and V is 

twice the integral because there are identical coils above and below the channel.   The 

same result is obtained for either phase,  except for a 90° phase difference, only when 
- ikx the fields have a simple e J      dependence. 

2.4   POWERS 

Consideration is restricted to the time-average powers because of the field products 

involved.    The time-average real power supplied to the fluid by the exciting system is 

/    <Sf * Tn> da |     ' 

where 

Ps = Re     j -     #      (S, '  ijda   >      . 126) 

surf 

sl   =  or-   (E, XB*) (27) i        2fxf   ^ ~ "f 
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is the time-average complex Poynting's vector, the *   denotes the complex conjugate, 

i    is a unit vector normal to the surface and outwardly directed, and the surface,  located 

at y = ± a,  encloses the fluid. 

The mechanical power output, the power supplied to the external fluid system by 

the machine,  is the product of the time-average electromagnetic pressure gradient and 

the velocity integrated over the fluid volume. 

Pm=    /   <Vpem>Udxdydz, (28) 
du 

"vol 

where 

< VPem>   =Re) 2 f' (29) 

The power dissipated in the fluid, because of its finite conductivity, which is always 

positive,  is 

Pr = J    ~2a~   dxdydz* (30) 
vol 

It is the integral of(J • JJ,e)/2or, not Rej(E • J;*y2L as the latter formula would result in 

i • 1* ) J • J* ( (v X B) • T* ) J • J* 
Re ) (      =    ———    - Re 2ff / 2 2a 

+ V* <Vpem>* (31) 

This includes both the power dissipated in the fluid and the power converted from 

electrical to mechanical form, and its integral gives P . 
2 s 

The efficiency including only the I R loss in the fluid is 

P 
~    .        s 

g       P 6 m 
(32g) 

or 

P 
e    =       m    j 

P        P,,     ' (32p) 
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where g and p stand for generator and pump operation, and P    and P     are both negative 

for generator operation.    This sets an upper limit on the obtainable machine efficiency.   ' 

The remaining powers are the losses in the core,  exciting coils,  and fluid viscosity. 

The core loss P   is found in the same manner as P , except that Poynting's vector in 
C 5 

the core is used and the surface now surrounds the core.    Alternatively, it could be ob- 

tained by integrating   fj    • J* j/2(r   over the core volume.    The coil loss is 

z+c x+n\      £(X)   . £*(X) ^2.2. 
Pe=2/ / "      2a" dxdz^üV^ (33) 

J J S S 

Here,   the last expression in (33) is obtained for the exciting current of Eq. 2 for a 

machine of ler 

in Appendix D. 

machine of length n wavelengths and width c.   The fluid viscous loss P    is considered 
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III.    CONSTANT  FLUID VELOCITY 

The fluid flow will in general be turbulent, so that details of the flow are of limited 

value.    The fluid velocity is assumed to be constant, which uncouples the electromag- 

netic and fluid equations and allows an analytical solution to be obtained.    This em- 

phasizes the important features without obscuring them in the mathematical detail which 

occurs later. 

3. 1   ELECTROMAGENTIC  FIELDS 

The constant fluid velocity eliminates the need for the fluid equations and simul- 

taneously linearizes the electromagnetic equations. The excitation, the uniform sur- 

face current of Eq.   2, can be written in complex notation as 

K=r   Re  {NIej(u,t-kx)|. (34) 

Since the system is linear, the vector potential must possess this same exponential de- 

pendence.    Redefining the complex amplitude of Eq.   15 for this case as 

A(x,y,t) = Re{T  A(y)eJ(Wt-kx)}. 

and substituting this in Eqs.   16 and 17, gives 

d2Af 
2, 2 

(35) 

and 

where 

—2 y   k   A   = 0 (36) 
dy — 

d2Ac 

—=-   - 62k2 A    = 0 , (37) ,2c '     ' dy — 

y2 = 1 +jsRM (38a) 

62=l+jRMc (38b) 

(V^- V) 

V 
s = -4- > (38c) 

s 

and R,. and Riyr    are defined in Eqs.   17.    The slip based on synchronous (field) speed 

s represents the motion of the field relative to the fluid.    The magnitude of the field- 

fluid interaction is indicated by sRM, which is based on the velocity difference v   - v, 

rather than by RM alone. 
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The form of the potentials, from Eqs.  37 and 38, is 

A. = A., cosh yky + Af2 sinh yky (39) 

and 

A^A^e-^'yl. (40) 

since A    must approach zero far from the core.    The vector potential is symmetric, 

from {He symmetric excitation, so that Af2 = 0.    By applying the boundary conditions at 

the fluid-core interface, Eqs.   20 and 21, the solution is 

jU-NI cosh yky 
^ =   k(y sinh ya + K5 cosh ya)    for lyl < a (41) 

and 

^Nje-Skdyl  -a) 

^c^My tanhyQ+ «6)     forlyl>a, (42) 

in which 

a = ak (43a) 

and 

(43b) 

are the ratios, respectively, of the channel width to the excitation wavelength and the 

fluid to core permeability.    The electromagnetic fields, determined from the potentials 

through Eqs.  6 and 7, are listed in Table 1. 

Table 1.    Electromagnetic fields for a constant fluid velocity. 

-»• —• 
_       MfNI(iv y sinh yky + i j cosh yky) 

 f y sinh ya + Kö cosh ya '     a' 

- i j vuf NI cosh yky 
E   =   -       ^     ^    1  (44h) f y sinh ya f  K 6 cosh ya v       ' 
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Table 1.    Electromagnetic fields for a constant fluid velocity (Cont. ). 

- iz Jks R^ NI coshyky 
_f y  sinh y a + ^ 5 cosh y a (44c) 

_        ^fNI(-"Ix6+TJ)e-6k(lyl   -a) 

% =  y tanhya + Kb  (44d) 

^     Tz]vsMfNie-6k(ly' -a) 

_c ~ " y tanh  ya + ^6 (44e) 

_ T  jkKR^NIe-^W  -a) 
Jc--— ^  (44f) 
— y tanh ya + «c6 

3. 2   ELECTRICAL IMPEDANCE 

The impedance observed at the terminals of an exciting coil one wavelength long, 

obtained from the terminal voltage of section 2. 3, is broken up into series and parallel 

equivalent circuits   for the machine.    The formulas are then discussed and simplified 

for a narrow-channel machine. 

The terminal voltage for a constant fluid velocity is determined from Eq.   25 to be 

27rN2c   /  1     . ^s^f \ 
— = ~k (ö- +    y tanhya + 1^6 j I   • (45) 

The same result is obtained for either phase, except for a 90° phase shift which has no 

effect on the impedance.    The series-equivalent-circuit resistance and inductance per 

coil, from 

V = {R    +j"L)i, (46) 

are 

and 

Rs = Re " RoIm { y tanhya + Kb  } (47) 

L
S 

= LoRe  {y  tankya^S   }' (48) 
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where 

2* ixf v   N2c 
R    = wL   =    t-r^ , (49) o o k 3 l    ' 

and 

S 

is the internal resistance of the coil, because of its finite conductivity.   Excluding R , 

the normalized rations R /R    and L /L   depend only on the dimensionless parameters 

s' RM' RMc' a' and K • 
The formulas above can be simplified for the case of a narrow or slit channel, 

ya « 1, with a lossless core and exciting coils (R^   = 0, R    = 0), to 

Rs   .      /I     \       sRMa ,,n 
Ro   "      [K+a)   J + _2„2   ■    • ^ 

S RMa 
and 

0 1      S  KMa 

Here, 

RMa^(77x)RM (53) 
a 

is the pertinent magnetic Reynolds number.    These equations clearly show the depend- 

ence of the circuit elements on machine parameters without the interference of com- 

plicated equations and secondary losses.   The appropriate magnetic Reynolds number 
RMa *s ':,asec' on t*ie exciting wavelength and fluid permeability for a good core, if < a, 

and on the channel width and core permeability for a poor core, if > a. 

The slit-channel resistance and inductance are plotted in Figs.   10 and 11 versus 

s (or v) with RMQ as a parameter.    The extremes of ( If + a) R /R    are ± 1/2 and occur 

at the values sRi»*- = ± 1.   Any RMa can be compensated for by varying s to hold the 

resistance or power level constant, but increasing the magnitude of s lowers the effi- 

ciency, as shown in section 3.3, so that RMa should be as large as possible.   Since 
RMa — RM' mac'1ine operation is always best with an ideal iron core because the 

smaller reluctance of the magnetic circuit results in larger applied and reaction fields. 

Note that maximum resistance corresponds to maximum power only for constant-current 

excitation. 
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Fig.   10.    Series resistance of the slit-channel machine 

as a function of s and RiyrQ . 
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Fig.  11.   Series inductance of the slit-channel machine 

as a function of s and RMa. 

The slit-channel equations show that increasing the channel height a (or a) results 

in less interaction.    For an ideal core, #f = 0, the magnetic field varies as l/a; and the 

power density, which is proportional to the magnetic field squared, goes as l/a .   Since 

the volume is proportional to a, the total power varies as l/a.    The variation is de- 

creased for « / 0, but it is still true that a (or a) should be as small as possible, and 

that K should also be as small as possible. 

Approximate expressions can also be found for large ya. Re ^ ya i > 3, so that 

tanh ya ä i.    Then, for a lossless exciting coil. 
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R 
 £ 

R - Im {r*1'*} =±   y/ldj for s ^ 0; (54) 

and 

Re {y +   Kb j yßJsR 
(55) 

M1 

The second expressions, valid for lsRMl » 1 and a lossless core, show that this case 

is not good for constant-current excitation because the resistance and power are small. 

The general formulas, containing additional variables, are harder to visualize.   In- 

creasing either if or a will still decrease the interaction.    The location of the maxima 

of R /R   will move, but the general shape of the curves remains the same.    The addi- 

tion of core loss will shift the point where R    = 0 away from s = 0, since the fluid must s 
supply the core loss before any net power output is obtained.    The ratios R /R   and s     o 
L /L   are plotted in Figs.   12 and 13 versus s with RM   as a parameter to show this. 

They are an extreme case for demonstration purposes, with both K and RMc large.   If 

the core loss 6 is appreciable, K will be much less than one for any reasonable core. 

The shape of the curves is determined by RMa. not RM, because ^ > a. 
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Fig.   12.   Series resistance as a function of s and Rjur_« 

A series-equivalent circuit is derived as a natural consequence of the inductive 

system, but a parallel version may be more useful in studying the practical aspects of 

the MHD induction machine.    In terms of the series elements, the parallel values are 

R. 
R2 + c2 L2 

s s 

s 
(56) 
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and 

L    = 
P 

R2 + u,2 L2 

s s_ 

w2 L 
(57) 
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Fig.   13.    Series inductance as a function of s and R Mc* 

First, considering the coil resistance R    separately, the equivalent circuit of 

Fig.  14b is obtained, where 

R 
_E  = 
R o        Imlv tanh ya + «6} 

(58) 

and 

L 

Rejv tanh ya + "6} 
(59) 

These equations differ from the series results in that the real and imaginary parts are 

in the denominator.    This makes a significant difference in the circuit values, as is 

shown by the slit-channel equations for a lossless core. 

R 

R o (*+a)sRMQ 
(60) 
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and 

i=    . 
L     K + a o (61) 

Re    <RS-
Re)   \ 

(a)  Series Equivalent With Ro Separated 

0 WW 

(b)  Parallel Equivalent With R    Separated 

(c)  Total Parallel Equivalent 

Fig.   14,    Equivalent circuits. 

For large ya. Re | yaj  > 3. the approximate 

[P   _ 1 /—2  > 
l0        Im (y +  *6}    =:t  VliRTri for s <   0 

equations are 

R 

"R (62) 
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with the parallel combination of R    and L    (Fig.   14b) or a new total parallel equivalent 

and 

l^-=   Re   {y +   ^6}    ^l^l   ' (63) 

where the second expressions are for |sR.J   » 1 and a lossless core. 

From the parallel equivalent circuit, it is seen that the field-fluid interaction in- 

creases without limit with increasing lsRM    I if the voltage is held constant, as op- 

posed to constant-current excitation where there is a peak.    For constant-current ex- 

citation the reaction current of the fluid reduces the net current and thus the field for 

large lsRM   I, so that less interaction occurs.    For constant-voltage excitation the 

flux linkage or magnetic field is held constant, so that the current increases with 

IsR^   I and no peak occurs.    The same results are obtained for either equivalent cir- 

cuit, but the series one naturally corresponds to constant current, the parallel one to 

constant voltage.    Constant-voltage excitation is closer to actual operating conditions. 

Including the coil resistance R    greatly increases the complexity because it is not 

related to the other terms and the equations do not simplify.    It can be left in series 

with the parallel combir 

(Fig.   14c) can be found. 

Adding R    plus the leakage reactance    X   to the discussion changes the conclusions. 

The voltage that was previously held constant was the internal induced voltage, corres- 

ponding to operation at magnetic saturation.    For a generator, as the current increases 

with |sRtv,Q|the total generated power increases, but the power output eventually de- 

creases as the external load becomes small compared with the internal impedance of 

the winding, R    and X .    If the terminal voltage is held constant as ia a large power 

system, the internal voltage and interaction decrease with increasing current, because 

of the voltage drop across R    and X .    In either case a peak in the output power occurs, 

and that peak is controlled by R    and X . 

The Q of the induction machine, the amount of reactive power required to obtain a 

specified real power, is 

s Ma 

where the second form is valid only for a slit channel and a lossless core.    To make 

the reactive power small compared with the real power,  | sR       I should be large, but 

this in turn may result in less energy transfer, the result depending on the exciting 

conditions.    The power factor is 

^Leakage reactance, caused by flux set up by the exciting current that does not link the 
fluid, has been neglected in the idealized model?^ 
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a R SRMa ,«,-, cos 6 =      ; =  — » (6 5) 

/ '^^L 
where the second expression is again for a slit channel and a lossless core.    These re- 

sults are used in Section VII to discuss practical aspects of the induction machine. 

3.3   POWERS 

The time-average powers are calculated from the equations of section 2. 4,    Poyn- 

ting's vector in the fluid is 

_^       ^x. v   N"I   (i   cosh yky cosh y*ky - i J y *cosh yky sinh v*ky) 
Q is x y~ /RfW 
_f " 2{y sinh ya + K6 cosh y a) (y *sinh y *a + Kb* cosh y *a)      ""'l     > 

The x component represents a constant power flow; it makes no contribution to the 

power supplied to the fluid.    The powers for a machine n wavelengths long in the x- 

direction and of depth c in the z-direction are 

PI       j y tanh y a [ p    _  o m   i ' r__S  ,67. 
s "   (y tanh ya + ^6) (y* tanh y*a + Kb*) K   '' 

P     = (1 - s) P (68) m     v '    s v    ' 

Pr = sPs . (69) 

where 

P   = LU v   N2I2 cnK   = I2R    (n) • (70) o     ^f   s o x     ' 

The second form of P   points out the relation between the powers and the impedance. 

For a slit channel and lossless core, P   becomes 

!jL=     /_L_\       sRMa  
Po V^  ^ 1 + S2R2        - {) 

Note that P   differs from the electrical power input to the machine by the power loss in s 
the coils and core.    These results for P , P   , and P   are identical to the power-flow 

s j 2m r 

relations for a rotating induction machine.' 

One set of power curves is plotted in Fig.  15 for a slit-channel, lossless-core 

machine with constant-current excitation.    The three regions of operation are shown: 

pump, generator, and damper. 
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Fig.   15,    Normalized powers for a slit-channel machine 

with constant-current excitation as a function of s. 

The induction machine requires power loss in the fluid for its operation.    Equa- 

tion 69 shows that if P   in zero, P   must be zero.    This is also seen from the field 
i s 

picture described in section 1.2.    If the fluid resistance is zero, the fluid current lags 

the induced voltage by 90°, because of the inductance, and the reaction field lags the 

applied field by 180°.    Thus, referring to Fig.  3, the equivalent fluid magnetic poles 

lie midway between two pairs of exciting poles, and the net electromagnetic force is 

zero. 

For operation at constant induced voltage, corresponding to saturation of the iron 

core, P   for a slit-channel machine can be rewritten in terms of the constant trans- 

verse magnetic field. 

JMfNI 

^fy       (1 +jsRM)Q+   Kb (72) 
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as 

ay   cnA ^ 
P    =  B^    B,   sRn/r • (73) s /Ltf fy _fy      M y     ' 

This expression, valid for any core, again shows the steady rise in power transferred 

to (or from) the fluid at constant induced voltage. 

The electrical efficiency, including only the power loss in the fluid conductivity, is 

X      for s < 0 (74g) 
'g      1 - s 

or 

e    = 1 - s for s > 0. (74p) 

This represents the upper limit to the attainable efficiency inherent in the induction 

machine. 

The power loss in the core is 

Po  if Im   j 6 j 
Pc =   (y tanh ya + Kb) (y* tanh y*a + Kb*)   ' (75^ 

If the exciting coil and fluid viscous losses are negligible, the generator and pump effi- 

ciencies are 

e-  =  T-i—   j 1 +   T     ^(^    ; ( for s < 0 (76g) g      1 - s     J Im (y tanh ya) ' 

and 

ep = (1 " S) I" ImdfS) \tovs> 0. (76p) 
( Im (y tanh ya)   ) 

The terms in brackets, always less than or equal to one, represent the decrease in 

efficiency, because of core loss. 

3.4   SKIN EFFECT 

The vector potential for a constant fluid velocity, Eq. 39, can also be written in 

the form 

e     s [cos esy+j sine sy], (77) 
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where 

's-   Re  fTX] (78) 

and 

es = Im   jykj   . (79) 

The electromagnetic field decays exponentially from the surface with the space constant 

6   , which is called the skin or penetration depth.    The exponential spatial dependence 

resulting from finite electrical conductivity, represented by the time derivative in 

Eq.  9, is a familiar trademark of skin effect.   In this case there is an exponential de- 

pendence even if no conducting material is present, cr   = 0.    This is a property of the 
42 two-dimensional solution of Laplace's equation,    and is referred to here as the geo- 

metrical skin effect.    The remaining term of Eq.  9, involving the fluid velocity, repre- 

sents the effect of motion on the field.   It modifies the skin depth caused by the conduc- 

tivity, as seen in Eq.  81, but differs from the conventional electrical skin effect in 

changing the phase angle, as discussed in section 1.2. 

The two sources of the exponential dependence cannot be treated independently, 

since they interact.    The space constant for the geometrical skin effect, with CT„ = 0, is 

6g = ir ' (80) 

while the purely electrical skin depth is 

6    - UZ    -   1       f 
e   ylußd k     Vl sR 

M' 

(81) 

In the second form, written for the fluid, the slip s appears because the frequency seen 

by the fluid is not the exciting frequency w, but the reduced frequency s w, because of 

the relative motion between the fluid and the traveling field.    The skin depth 6   sim- 

plifies to 6   for lsRMl « 1, and 6   for IsR^I » 1.    For the intermediate region 

Eq.   78 can be rewritten as 

(82) 

The ratio 6 /a determines the importance of the skin effect.   If the ratio is of the 

order of or less than one, only the fluid adjacent to the excitation takes part in the 

*As an indication of the numbers involved, 6   is 0. 85 cm for copper, and 2 cm for 
liquid sodium at 60 cps. 
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interaction.    Otherwise; the field penetrates the full channel width, and the power 

density is almost constant across the channel.    As an example, for o = 0. 1, (6 /a) = 1 

when IsR-J = 200, and the field and power density at the center of the channel are 77% 

and 59%, respectively, of their values at the edge.    These are increased to 92% and 

85% for lsRMl = 100, and to 99,4% and 98. 8% for |sRMl = 10,    For the values of 

|sR„J expected in a practical machine, skin effect is important only for a > 0. 1, a re- 

latively wide channel. 

The series resistance R   and the constsuit-current power P   (Figs.   10 and 15) have 

maximum values at or near IsR^I = 1, and decrease for larger lsRn/rQl-    This drop 

in power level, as explained in section 3. 2, occurs when the reaction current in the 

fluid becomes comparable in magnitude to the exciting current, decreasing the net cur- 

rent and magnetic field.   It does not occur at all for constant-voltage excitation.    This 

is not caused by skin effect, although the two are related because both indicate appre- 

ciable reaction fields, as is shown by a slit-channel machine in which the decrease 

occurs even though there is no variation in the fields across   the channel. 

The separate consideration of skin effect complements the material of sections 3. 1 

through 3. 3 and leads to a better understanding of the machine.   It is included in the 

previous theory but not explicitly considered.    Its effect is small, provided a is small, 

because of practical limitations on IsR^J.    Skin effect is used in comparing even and 

odd excitation in section 3, 6, and is seen in section 3, 7 in which field profiles are 

plotted and discussed.    The shape of the curves can be roughly predicted by Eq.  78, 

3. 5   ODD EXCITATION 

With odd or antisymmetric excitation the currents in the two exciting sheets are in 

opposite directions, 

K = ± i    NI cos (wt - kx) at y = ±a (83) 

This corresponds to wrapping the exciting winding around the machine as in a traveling- 

wave tube.    The conventional rotating machine, with the coils imbedded in the face of 

the magnetic structure, is an example of even excitation.   Qualitatively, the magnetic 

field produced by even excitation is primarily perpendicular to the flow for a narrow 

channel, while for odd excitation it is primarily parallel to the flow.    Since only the 

perpendicular component interacts with the fluid, even excitation is to be preferred for 

energy conversion,    A machine with odd excitation may be considerably easier to build, 

particularly for a round channel. 

The model and equations for odd excitation differ only in that the exciting current 

of Eq, 83 is used.    Consequently, the symmetry conditions on the field components are 

reversed.    The form of the vector potential in the fluid is the same as for even excita- 

tion, Eq, 39, but now only the sinh yky term is retained, because of the odd symmetry. 
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The only change from the even-excitation solution is the interchange of sinh and cosh 

in all the equations.    For example, the series-equivalent resistance and inductance are 

R      = R    - R   Im so       e       o y coth ya + «5 }• (84) 

and 

so L   Re o 
1 

y coth ya + Kb }■ (85) 

where R , R , and L   are defined in Eqs. 49 and 50, and an o subscript is added to 

distinguish between the two excitations. 

3.6   COMPARISON OF EVEN AND ODD EXCITATIONS 

Comparison of even and odd excitations is difficult beqause it is hard to visualize 

how tanh and coth of complex arguments vary.    Roughly, me difference should be large 

for a narrow channel, ya « 1, and small when skin effejft becomes appreciable, ya » 1. 

The comparison is split into three regions, for ya smaller than, larger than, and of the 

order of one.    Only impedances are compared.    It ispoX necessary to do the powers 

separately, since they are included in the resistance?    Field and force profiles for both 

excitations are plotted and discussed in section 3. 

For ya « 1 the slit-channel approximation call be used for odd excitation.    Then, 

for a lossless core and exciting coils, Eqs. 84 anil 85 become 

R. so 
R. 0. (86) 

and 

so 
1 +  «a (87) 

to first-order in ya.    There is no intenaction between the fluid and the electromagnetic 

field, and no energy conversion.    To We consistent with this there must be no electro- 

magnetic pressure gradient in the fluid.   The magnetic field for odd excitation is 

cosh /ky + i j sinh y ky) 

fo " (y cosh y qr + Ifö sinh y a) 
MfNI (ix y 

(88) 

The pressure gradient, depending on the transverse magnetic field squared, is pro- 
2 2 portional to (ya)   and y   for a slit channel, as compared with that for even excitation 

2 which is proportional to l/(ya)    and independent of y.    The pressure gradient is zero 

to first-order in ya, which agrees with the resistance. 
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The energy density and power output with odd excitation are smallest for small 

ya, while for even excitation they are largest.    The best operating condition is even 

excitation for small y a, which is clearly superior to odd excitation by many orders of 

magnitude.    Only for ya of the order of or greater than one, when skin effect becomes 

appreciable, are the two excitations comparable. 

Bk>r large ya. 

Re   jyaj    > 3, (89) 

approximate expressions can be used because tanh ya and coth ya are both equal to one 

with an error of less than ± 1/2 % for each, and a difference of less than 1% in their 

real parts or magnitudes.    Then, 

R      = R    - R   Im |—* v,   \  , (90) so       e       o I y +   K°   ) 

and 

Lso = LoRe {yT-icr}   ' (91) 

which are identical with Eqs.  54 and 55 for even excitation.    The circuit elements for 

both excitations are the same, and are independent of a.    Comparison with Eq.  78 shows 

that 

-iij' <92) 

or that skin effect is pronounced.    The fields do not penetrate into the fluid, so that the 

interaction is confined to thin strips adjacent to the walls.    Thus the electromagnetic 

fields and powers do not depend on the type of excitation or the channel width (a), and 

neither do the circuit elements.    This case is poor for energy conversion, because of 

the low power density. 

For the intermediate region, ya of the order of one, there are no approximate ex- 

pressions.    Curves of the series resistance for both excitations are plotted against 

sRM with a and K as parameters in Figs.  16 and 17.    Only one quadrant is shown be- 

cause of symmetry.   When the curves for a = 0. 1 or less are not shown, it is because 

those for even excitation are too large for the graph, while those for odd excitation 

amount to only a few per cent of full scale.   It is evident that for small a, as mentioned 

previously, even excitation is preferable to odd excitation or to either case for larger 

a.    For a >■ 3, Eq, 89 is satisfied for any value of sRM and the curves are independent 

of a or the type of excitation.    They still exhibit the familiar shape with a peak in the 

resistance curve due to the dependence of y on sRM, 
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Fig.  17.   Series resistance for even and odd excitation 
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For a around one, so that skin effect is large but not dominant, the difference be- 
tween the two excitations is small.    For a = 1 and K = 0 (Fig.  16), the even peak power 
is approximately twice the odd peak power, but there is a range past the peaks where 
odd excitation is approximately 10% better.    For a = 1 and « = 1, (Fig.  17) the general 
behavior is the same except that both differences are less because the K term in the 
denominator par'^ally obscures the excitation effects.    For large lsRMl the curves 
merge, with Eq.  89 satsified at lsRMl = 17. 

The crossover of the even and odd excitation curves cannot be easily predicted from 
examination of the equations.   In that region both tanh ya and coth yo. differ from one 
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by less than ± 7%, so that the shape of the curves is controlled mainly by y, as shown 

by the nearness to the a >^ 3 curve.   It is only the small differences that are important, 
with the result independent of whether tanh ya is greater or less than one.   The field 
profiles for a = 1 and sRM = -10, if plotted, would show that the odd field is larger to 
account for the higher energy density.   This region is not good for energy conversion, 
because of the low energy density, which can be improved for either case by decreasing 

Curves of inductance and Q, plotted in Figs.  18 — 21, exhibit the same general be- 
havior, including the crossover, as shown by the resistance. 
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Fig.  18.   Series inductance for even and odd excitation 
with K = 0 as a function of sRM and a. 
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Fig.  19.   Series inductance for even and odd excitation 
with ^ = 1 as a function of sRM and a. 
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as a function of sRM and a. 

The discussion above shows that even excitation with small a is preferable for 

energy conversion.    They may not be true for other applications, such as induction 

flowmeters, for which simplicity of construction is more important than efficiency or 

power density.    Further comparison is brought out by the profile curves of section 3.7. 

3. 7   ELECTROMAGNETIC  FIELD AND PRESSURE-GRADIENT  PROFILES 

The electromagnetic field and pressure-gradient or force profiles determined in 

sections 3. 1 and 3. 5 for a constant fluid velocity are plotted and discussed.    They are 
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used to study skin effect, compare even and odd excitation, and to examine fluid 

velocity profiles in Section IV. 

The electromagnetic field components are related to the vector potential by 

aAf 

fx        ay v     ' 

Bfy  = jk Af (94) 

Efz = -j u> Af (95) 

Jfz = "J af (u. - vk) Af . (96) 

The time-average electromagnetic force or pressure gradient is 

A, A* /dp    \ iVf "f 

\ fe2-)^^^"^) —1  (97) 

For either excitation all field components are proportional to the vector potential ex- 

cept B„   , which is proportional to the vector potential for the opposite excitat'c". 

Plotting A* for both even and odd excitation will show how all components vary across 

the channel. 

The magnitude and the magnitude squared of Af are plotted on a linear scale in 
I  —   i        * Figs.  22 and 23 for several values of a, all for lsRMl = 1.    The magnitude is also 

plotted on a semi-log scale in Fig.  24 to illustrate the exponential behavior.    The 

magnitude squared, if plotted on a semi-log scale, would be identical to the magnitude 

but with twice the slope. 

The curves are normalized to one at the edge of the channel to show the relative 

shape without considering absolute values.    The constants by which each normalized 

curve is multiplied to obtain the absolute value, given in Table 2, vary so widely as to 

make it impractical to compare the un-normalized curves on one graph.    Only the 

constants depend on the core properties. 

For small yo, where the slit-channel approximation is valid, the even-excitation 

field is constant across the channel and the odd field is linear in y.    This is valid for 

a <: 0. 1 and |sRMl _< 10 within 1%.    At Q ^ 0. 1 and lsRMl = 10 skin effect is negligible, 

6s/a = 4.3. 

For large a, skin effect becomes important.    At a = 1. 0 and IsRnJ = 1, ^ /a = 0. 91, 

the even field has decreased at the center of the channel to 62% of its value at the edge. 

*The magnitude does not depend on the sign of sRM.    Changing the sign reverses the 
angle only. 
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1.0 

Fig.  24.    Vector potential normalized to 1 at y = a versus y/a 

(semi-log scale). 

There has been little change in the odd field because the contributions from the two 

exciting windings subtract, so that the decreases partly cancel and the total field is not 

changed as much.    For even excitation they add, and the change is doubled.    The semi- 

log curves for this case are not linear because the contributions from the two windings 

have to be considered, and the sum of two exponentials does not plot linearly.    This is 

seen from Fig.  24 because the even and odd-excitation curves do not start with the 

same slope, as they do for larger a when only one excitation term is important at the 

edge. 

For a^ 3 Eq.  89 is satisfied for any sRM, (6 /a)j< (1/3), and skin effect dominates 

the machine behavior.    The field attenuation is large, so that the fluid sees only the 

field attributable to the nearer exciting plate, and only a strip along each exciting plate 
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enters the interaction.     The profiles are the same for either excitation except near 

the center,  where the fields from the two windings become of the same magnitude. 

Since it is no longer necessary to consider both contributions, the semi-log curves 

are linear except near the center.    For a  =  3  and   lsRMl   =  1,  (6g/
a)   =0,3  and the 

magnitude of A. has decreased to l/d of its value  at the edge at (y/a) =  0.7,   as 

expected,    A similar  result is obtained for a = 10. 

The multiplicative constants for each curve (Table 2) also provide information 

about machine performance.    The average value of the pressure gradient from Fig,  23 
multiplied by the appropriate constant is proportional to the power level of the machine. 

The best results are obtained for even excitation and small a, the worst for odd excita- 

tion and small a, while for large a the two become identical.    This agrees with the con- 

clusions of section 3.6, 

Table 2,    Multiplicative constants for vector potential and electromagnetic 

pressure-gradient profiles, all for IsR^J = 1,   K = 0, and R.-   = 0, lM' lMc 

a Magnitude Pressure 

Even Odd Even Odd 

0.01 7071,3 1.0 50. 0 1,00 X 10"6 

0. 1 70. 9 0,997 5.03 9,93 X 10'4 

1.0 0. 963 0, 734 0, 927 0,539 

3.0 0, 280 0.281 2. 11 2, 13 

10.0 0. 084 0,084 7,07 7,07 

In addition, multiply magnitude by (JU JMIa), pressure by (^4- 
3, 8   UNBALANCED EXCITATION 

Unbalanced excitation, when the two exciting phases of the MHD induction machine 

are not equal, is an important practical consideration.    Unbalance may exist because of 

unequal generator loads or nonidentical coil structures for the two phases.    The single- 

phase machine, with only one exciting phase, is a special case.    Unbalanced excitation 

is treated as a direct extension of the previous work by superposition of oppositely 

traveling fields.    The space and time-average powers are orthogonal and, therefore, 

additive.    The general solution is obtained and specialized to the single-phase machine. 

Consider two unequal exciting phases with turns densities N. cos kx and N0 sin kx 

excited by currents I. cos wt and !„ sin wt.    The total surface current is 

K i   K   cos («t - kx) + i   K   cos (wt + kx), 
Z       ' z      ™ 

(98) 

41 



where 

N I   + N I 
K+ = 2 (99) 

N I    - N I 
K_ = 2 • (100) 

The unbalanced surface current is represented by forward and backward traveling waves 

with sum and difference amplitudes, where + and - subscripts are used for the two 

traveling waves, and 1 and 2 for the two phases. 

Superposition applies to the field solution, since the model is linear; the field is 

the sum of the responses resulting from the forward and backward excitations with the 

appropriate amplitudes and slips.    Superposition also applies to the space-average 

power even though it involves products.    To see this, consider the time-average "power" 

product of 

F = Re  |F+eJ(wt-kx) + F. eJ(Wt + kx)} (101) 

and 

G = Re  { G+ eJ(wt " kx) + G_ eJ(wt + kx)}   , (102) 

which is 

„ p* F. G* F   G* F, G* F   G* 
<p> = i^_    =^_^   +     -^     +    zL^   e-J2kx+   ^L   ej2kx 

^ 2 2 22 2 ' 

(103) 

where F and G may be any periodic quantities.    Averaging this over any multiple of a 

half-wavelength causes the cross terms to drop out. 

Unbalanced excitation is easily handled by superimposing the previous results. 

For the excitation of Eq.  98, the vector potential in the fluid is 

Af-Re  |Af+eJ<wt-kx) + Af_eJ(wt + kx)}  . (104) 

where 

fifK± cosh 7;t ky 

f±      k(y . sinh y .Q +   Kb cosh y   a) ' ' 
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y±= i +
JS±RM 

(105b) 

v    + v s 
{105c) 

and 5 depends only on the magnitude of synchronous speed, not the direction.    All other 

field quantities can be determined from A„. 

The slips for the two waves are symmetric about 8=1, which corresponds to 

v = 0.    For s > 1 the machine acts as a pure loss or damper, dissipating both mecha- 

nical and electrical input powers in the fluid conductivity.    Thus, the backward wave 

will oppose the forward wave, decreasing the power and efficiency.    Its effect may be 

small, because of the difference in slip, if R,. is large.    The opposition of the two 

waves is also seen from the field-fluid interaction, since the force tries to drag the 

fluid along with the field. 

The impedance calculation is slightly more complicated because the voltages and 

turns densities are different for the two coils.    The voltages, from Eq.   25, are 

Vl = 

27r cNj ll R 
+ j 

ol 
N, 

K. K 

y + tanh y . a + Kb       "y    tanh y   a + Kb 
(106) 

and 

v    =    
2^cN2 h  +   Ro2_ 

_2 jkff s N., 

K. K 

y+ tanh y +a + Kb       y    tanh y   a + Kb .(107) 

From these. 

Rsi = 

2IT cN2 

 i_ 
ka 

R 
oi 

N. I. 
i   i 

Im 
K, K 

y + tanh y +a + /f 6        y _ tanh y   a +  ^6 !>(108) 

and 

L  . 
si 

oi 
N. I. 

i   i 
Re 

K, K 

y . tanh y +a + «6       y _ tanh y   a + «■6 
(109) 

where 

R   . = wL  . 
oi oi 

2ff ü,rv   cN. 
^f s      i 

(110) 
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and i is either 1 or 2 for the two coils.    This reduces to the balanced impedance for 

Nl 11 = N2 ^ ' NI • {111) 

The impedance can be simplified for a slit-channel machine as was done previously. 

The single-phase machine, a special case, has only one phase or winding, so that 

the two ♦raveling current wave amplitudes are equal.    The fields are not equal, however, 

because of the difference in slip.    The equivalent circuit values are 

Rs = Re 
O T I     1      .  1_ 

2 ) ¥ + tan'1 y +a + ^S       y    tanh y a +   ^6 (112) 

and 

•Re y + tanh y +a + Kb y    tanh y   a + Kb r (113) 

where R , R , and L   are the same as in the two-phase case.    The best that can be e     o o r 

done, if the backward wave is negligible, is 1/4 of the two-phase power output because 

the forward wave is half the previous value and there is only one set of coils 

The single-phase series resistance is plotted in Figs.  25 and 26 as .a function of 

fluid speed for two values of RMa-    Coil and core losses are neglected, and the slit- 

channel approximation is used.    The separate forward and backward-wave contribu- 

tions are also shown.    The two sets of curves clearly demonstrate that the effect of 

the backward wave becomes smaller as RMa increases. 
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Fig.  25.    Series resistance of single-phase, slit-channel machine 

forRMa= l0- 
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IV.    LAMINAR  FLOW 

4. 1   INTRODUCTION 

In the previous analysis of the MHD induction machine only constant fluid velocity 

has been considered to illustrate the principles of operation.    The fluid velocity pro- 

file and viscosity will have important effects for two reasons: 

1. The velocity profile may drastically alter the power flow. 

2. The viscous losses may be large. 

An exact consideration of profile effects is impossible, but a solution is obtained for 

laminar flow with reasonable approximations. 

The laminar-flow solution gives insight into the mutual interaction.    The flow in 

a practical machine, however, will probably be highly turbulent, because of the high 

velocities or (hydraulic) Reynolds numbers R    required to achieve reasonable power 

densities.    Turbulence in induction-driven flows is not fully understood, so that the 

limits on R   for laminar flow as a function of the applied magnetic field and flow para- 

meters are unknown.    A qualitative idea of turbulence, the turbulent velocity profile, 

and the effect of turbulence on machine performance are discussed in Section V. 

The fluid velocity and electromagnetic field are determined from Eqs.  9 and 13. 

The equations can be solved only for laminar flow, as little is known about solutions 

for turbulent flows either with or without a magnetic field.    Even then an analytical 

solution is clearly impossible, because of the nonlinear terms and the two-directional 

coupling, so that a reasonable approximation is made — that the fluid velocity is laminar, 

in the x-direction, and independent of x p-nd t.    This approximation and the resulting 

equations are discussed in section 4.2.    An analytical solution of the simplified equa- 

tions is obtained for a slit channel in section 4. 3.    In general, even the simplified 

equations can only be solved numerically   because the nonlinear terms and the two- 

directional coupling remain.    The numerical techniques and results are discussed in 

sections 4. 4, 4. 5, and 4. 6. 

4. 2   APPROXIMATE EQUATIONS FOR  LAMINAR FLOW 

To solve Eqs.  9 and 13, they must be simplified, because of the product type of 

nonlinearities.    Linearization with the constant-velocity solution used as the starting 

point is not valid for two reasons:   the constant velocity does not match the boundary 

conditions, and the perturbations are not small.    A power-series solution in the mag- 

netic Reynolds number is not desired because it would be limited to small RM, which 

does not include the range of interest for power generation.    Writing v and Af as 
in^wt - kx) ifwt - kx) Fourier series in eJ  v ', because of the simple eJV '   excitation of the cur- 

rent sheets, gives an infinite number of completely coupled equations that still involve 

products and derivatives with respect to y.    These equations are not amenable to solu- 

tion. 
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The equations are simplified by assuming the velocity to be completely in the 

x-direction.    The model implied by this assumption replaces the fluid by many thin 

strips which slide over each other with friction but do not move in the y-direction; that 

is, there is no mixing.    The continuity equation, (5), then requires v to be independent 

of x.    The electromagnetic pressure gradient on each strip, (Jf X B.) , consists of a 
-*■ -► ifwt - kx) constant term plus a second harmonic in (wt - kx), since J, and B. vary as ejy ' 

for a velocity independent of x and t.    The total force on a strip per wavelength in the 

x-direction is a constant, so that v should not have any time dependence for an incom- 

pressible fluid.    Thus, 

v=T  v(y) (114) 

is a consistent and reasonable approximation to the actual flow, provided that the trans- 

verse fluid velocity is small compared with the velocity along the machine. 

An idea of the relative sizes of v   and v   is obtained from the equations.    The velo- 

city can be written in the form 

^=^x vo(y) +^1 ^ y' t)' (115) 

since the transverse velocity can have no average value.   Here v   is the average flow, 

and v1 is the moving vortex-type motion induced by the electromagnetic force, because 

of its nonzero curl and x-and t-dependence.    The driving terms for the velocity, the x 
-♦     —^ 

and y components of J„ X B~, have the ratio 

(Jf X B
f)y 

(Jf X Bf)x 

B 
-^Z- = y tanhya. (116) 

where the last expression is for the constant-velocity fields.    The ratio is small for a 

slit channel, ya « 1.    Also, the effect of the y force component is diminished because 

its time average does not cause a time-average velocity. 
43 Penhune      showed that the fluid behaves like a lowpass filter; that is, for equal 

applied DC and AC forces the AC velocity is small compared with the DC velocity. 

This means that v1    « v   ; and, since the y component of the force is small for a slit 

channel, v.    is small compared with v.    and thus with v , as assumed.   The approxima- 

tion becomes worse for a wide channel, where B.   and B-   are of the same order of fx fy 
magnitude and the y variations of the field are large.    This case is poor for energy con- 

version, as shown in Section III and section 4. 6. 

^For mercury in a channel 2 cm wide (a = 1cm) driven by a DC and an equal-amplitude 
AC force at a frequency of 120 cps (the second-harmonic force of a 60-cps machine), 
Penhune found the ratio of the AC rms velocity to the DC velocity, both averaged over 
the channel, to be 3. 5 X 10-6. 44 
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With this one approximation (Eq    114) the equations become 

d2A 

^  2 --k
2   [l+jRM(l - ^-)j  Aj^O. (117) 

and 

"T^H-^V <118) 
dy J 

where complex notation is used in (117), the vector potential has only a z component 

and varies as e^ x' as before, and J,   and B.   are determined in terms of A-. fz fy f 
The left-hand side of Eq.   118 is independent of x and t, but the electromagnetic pres- 

sure gradient consists of a constant plus a second harmonic in (wt - kx).    The pressure 

gradient must absorb the second harmonic, but the total pressure across a wavelength 

of the machine is a constant because the second harmonic integrates to zero.    The 

pressure difference across the machine, supplied by the fluid source, does not depend 

on t and must also be independent of y.    The time average or the space average over x 

(the two are equivalent) of the pressure gradient is a constant, 

<lr> = Po- (119) 

Averaging Eq.   118 with respect to x or t and eliminating J-   and B-   gives 

771^= po'afk2 (vs'v) ^^ ■ (120) 

The equations are put in a more tractable form by defining the normalized variables 

y = -|. (121) 

u(y) = IlZL (122) 

Af(y) 

Afo 

where a is the channel half-height, v is the space-average velocity, and A. , the vector 

potential at the center of the channel, is determined by the boundary conditions.    In 

terms of v   and the average slip s, s 
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v = (1 ~ i) vs , (124) 

< 
which is considered to be a constant of the solution. 

The Hartmann number for DC flows is 

2       afa 2 
RT = -i—   B* , (125) 

O 7J O ' x ' 

where B   is the transverse magnetic field.   Defining an effective Hartmann number 

M(y) for the induction machine, 

M2--L J_. (126) 

in terms of the rms transverse magnetic field, the normalized equations become 

,2, dTF        2 
^ 2   " 

Q     [ 1 + JRM " JRM (1 " ^ u] ^ = 0' (127^ 

and 

d2u      ,,2 a po M2 .,„„. 
—9" - M u =  —jz -. -     -  -r. =7-- (128) 
d~2 »j(l - s) vg        (1 - S) y      ' 

Here, M is a function of y, and becomes a constant only for a slit channel.    All terms 

are symmetric except F, which is symmetric or antisymmetric for even or odd excita- 

tion. 

Equation 128 is identical to the Hartmann profile equation for a DC generator in 

terms of the loading factor 

Kdc= ^ = irnr • (129) O 1 o 

where R. and R   are the internal fluid and external load resistances.    The equivalent 

loading factor for the induction generator is 

Kind= P-V = T4ir. (130) s       r 

In both generators K varies from 0 for a short circuit or large interaction to 1 for an 

open circuit or no interaction. 
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The original set of equations has been simplified to two coupled nonlinear ordinary 

differential equations.    An analytical solution, possible only for a slit channel, is given 

in section 4. 3.    Equation 127 can be solved for F(y) if the velocity u(y) is specified. 

The equation is linear but with a varying coefficient, so that analytical techniques are 

not available and numerical methods must be used.    Likewise, Eq.   128 can be solved 

for u if A, is specified, again numerically.    The techniques used to obtain the numerical 

solutions and some of the results are discussed in sections 4. 4 and 4. 5.    Both methods 

are tested against known cases.    The techniques developed to solve the equations se- 

parately are then coupled together to obtain an exact numerical solution for laminar 

flow by an iterative procedure in section 4. 6. 

The solution could also be obtained by series techniques.    Penhune   used a power 

series in R». after making the same assumptions about the velocity.    The resulting 

infinite set of equations can be solved term by term to the desired accuracy.    For 

energy conversion, solutions are desired for large R,,, so that the series approach may 
46 not be valid.      The present approach is easier to use and more flexible, as it can handle 

turbulence to a limited extent. 

The electromagnetic powers, determined from Eqs.   26, 28, and 30, are rewritten 

in terms of the normalized variables as 

dF* 
A'    A'* Q Im <  F 3 fo    fo | —    dy 

y=i 
(131) 

m  " Al   A'*   a3 RA/r (1 - s) P        "fo "fo o 'M 

i 

/ [l - (1 - s) u]u F F* dy (132) 

- = Aio <  ^ RM  f       [l-(l-i)u]2rF*dy. 
O J 

(133) 

Here, 

fo 

fo      /i-NIa 
(134) 

is the normalized vector potential with the excitation magnitude removed, chosen for 

convenience in later work.    The simple power relations of Eq.  68 and 69 are replaced 

*Penhune solved for the magnetic field rather than the vector potential, but the equa- 
tions are similar. 
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by a relation between the integrals.    In general, P   and P     are increased over their 

constant-velocity values for a generator, because of the circulating currents set up, 

since the velocity drops below synchronous speed near the walls.    This region acts as 

a pump, and the net behavior of the machine may be changed from a generator to a 

pump or damper. 

4.3   SLIT-CHANNEL SOLUTION 

For a slit channel, ya « 1, the equations of section 4. 2 can be simplified to yield 

an analytical solution.    The electromagnetic field and the vector potential are indepen- 

dent of y, and the total current in the fluid at a given value of x is thus 

dy = -j 2af a (vs - v) Af , (135) 

which is independent of the velocity profile.    This means that the vector potential can 

be determined first, and thön the profile and powers.    The vector potential must be 

calculated from the integral form of Eq.   5a, as in Appendix G, because of the neglected 

y-dependence of the field.    Noting that the form of A , Eq.  40, is unchanged by the ap- 

proximation, and using boundary condition Eq, 20 and Eq.   135, gives 

MfNI 
A   =  J      , (136) 
—     kfr   a + *5) 

2 — where y   now depends on the average slip s.    This is the same as the slit-channel field 

found in Section III for a constant velocity. 

The normalized velocity, obtained from Eq.   128 for M constant, is the Hartmann 

profile. 

/- cosh My \ 
K1 ' coshM ) 
( i tanh M \ 
V 1 '       M       / 

U^   =    —     tanhM V (137) 

so that, for a slit channel and laminar flow, the profile for the induction machine is 

identical to that for a DC machine with a Hartmann number based on the rms transverse 

magnetic field.    The pressure gradient p   does not affect the profile shape.   It is not 

an independent constant, but has to be adjusted to provide the specified flow rate v".    The 

Hartmann profile is plotted in Fig.  27 for several values of M.    The curve for M = 0 is 

the parabolic profile of laminar hydrodynamic flow. 
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Fig.   27.    Normalized Hartmann velocity profiles. 

The powers for the slit-channel machine, from Eqs.   131 - 134, are 

aiRM 
P      =   P ö 9- s        o   ,2.   .   ., c. . *2 0   (y a + #f6) (y* a + K5*) 

Pm = ^ " S) Ps Fm(u) ' 

(138) 

(139) 

Pr = i Ps Fr(u) (140) 

Here, P   is independent of the profile, since it depends only on the fields.    The equa- s 
tions are identical with the results of section 3. 3, except for the profile factors 
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Fm(u)=-^[1 ■ (1 "s)u2] (141) 

and 

Fr(u) = ^-  [ 2i - 1 + (1 - i)2 u2 ] . (142) 
s 

where 

u-    /    (u (y))2dy, (143) 

the average of the velocity squared, is always > 1,    For a generator, F     and F   are 
n 111 " 

J> 1, and the I R losses are increased for the same power output.    For a pump, F    <_l. 
The profile factors for a Hartmann profile are 

(144) 

and 

F    =   !    [l - t1 -s)       fl-  -M 1 
\      m) 

C1- i) 
(145) 

using the approximations for M > 4.    The exact expressions, plotted in Figs.  28 and 29 
for several negative values of s, show that the factors increase as | s | decreases and 
as the profile deviates from a constant.    This is to be expected for a generator because, 
as s approaches zero or as the profile becomes more rounded, the size and relative im- 
portance of the positive-slip region near the wall increases.    In this region the machine 
is acting as a pump, so that the losses resulting from circulating currents are increased. 

The factors for a parabolic profile, corresponding to M = 0, are 

Fm=|-   -U. (146) 
5s 

and 

Fr= f -   4r+ -hr- (147) r      5 5s Ss^ 
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Fig. 29.    F   for Hartmann profile. 

which are worse than for the Hartmann profile, as shown in Figs.  28 and 29.    The 

factors for several turbulent profiles, discussed in section 5. 1, are close to Hartmann 

because they are relatively flat. 

The generator efficiency is 

1 
"g       (1 - s) F (148) 

m 

since P   is unchanged but the input power is increased by F   .    At s = 0 there is no 

power output, but the circulating currents still exist, there is power input, and the effi- 

ciency is zero.    There is a peak in the efficiency, so that decreasing |s| further re- 

sults in a poorer efficiency because more of the fluid is pumped, in contrast to the 
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constant-velocity case where e    approaches one as s approaches zero.    Curves of e 

versus s for several values of M are shown in Fig.  30. 

Fig. 30.    Generator efficiency for slit-channel machine 

with Hartmann profile. 

The viscous loss for laminar flow can be found once the velocity profile is known. 

This is done in Appendix D, and the results are plotted in Fig. D-3 for the Hartmann 

profile.    The viscous loss increases with M, so that the improvement in F     is not free, 

but this is not serious, provided the viscous loss is small as it must be for a practical 

machine.    The viscous power cannot be compared directly with P     until the exciting 

surface current NI is specified. 

These results, derived by assumingya« 1, are valid for a much larger range than ex- 

pected. Comparison with the numerical results of sections 4.4—4.6 shows good agreement 

for a as large as 0. 1; that is, errors of a few per cent for a = 0. 1 and |sRMl up to 100. 

4.4   ELECTROMAGNETIC FIELDS AND POWERS FOR A KNOWN VELOCITY 

The vector potential in the fluid is determined from Eq.   127 when the velocity is 

specified.    The result when the profile for ordinary hydrodynamic flow, either laminar 

or turbulent, is used in the approximate solution when the electromagnetic force is 

small compared with the viscous force.   Otherwise the result may not correspond to an 

actual flow, but still gives information on the dependence of the fields and powers on the 

velocity profile. 

Equation 127 is a linear homogeneous second-order differential equation for F(y) 

in terms of u(y) and the machine parameters s, RM, and a.    The core properties and 

excitation appear only in the normalization constant A. , which is determined from the 

boundary conditions.    The best approach, both for finding the powers and for coupling 

the two equations together in an iterative procedure,is to solve the equation numerically. 

Several numerical methods are discussed in Appendix E, and the preferred method, 

method four, is chosen by testing on the case u(y) = 1, for which the exact solution is 

known. 

55 



The solution of Eq.   127 is a boundary-value problem with conditions at y = ±1, 

but the numerical method requires two initial values for the second-order equation. 
* 

Considering only even excitation,  and using symmetry to solve for only half the field 

and flow pattern, one initial value is that the derivative is zero at the center of the 

channel.    For the second initial value F(0) is taken to be unity, hence the definition of 

Af   as the vector potential at the center.    Since Eq.   127 is homogeneous, this proce- 

dure gives no difficulty, and the numerical solution is simply scaled to match the boun- 

dary conditions. 

Defining a new variable, 

dF(y) 
DF(y) =   -^   . (149) 

the initial conditions are 

DF(0) = 0 (150) 

F(0) = 1 . (151) 

The boundary conditions at y = 1 (Eqs.  20 and 21) and the form of the vector potential 

in the core, Eq.  40, are independent of the velocity profile, so that the constants are 

M-NIa 
:-~  (152) _fo       DF(1) +Q «6 F(l) 

and 

jUfNIa F(l) e6Q 

Acl =   DF(1) + a   «f6 F(l) (153) 

where F(l) and DF(1) are determined from the numerical solution.    For the numerical 

results Al  , defined in Eq.  134 as the vector potential with the excitation magnitude 

jLi-NIa removed, is used because jH-NIa is purely a scale factor. 

The powers are determined from Eqs.   131 - 133 by using the known field solution. 

The integrations for P     and P   are performed numerically by using the techniques of 

Appendix E. 

The numerical integration procedures were applied to the parabolic and Hartmann 

profiles, with the constant-velocity case used as a check on the accuracy.   Several 

turbulent profiles were also used.    Graphical presentation of the results for F(y) is 

♦Forjodd excitation the initial values are interchanged to satisfy the antisymmetry of 
F (y).   Otherwise, the procedure remains the same. 
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inconvenient because the profile change is small for small ya, while for large Y a» £ 

varies by many orders of magnitude, so that comparison is restricted to tabulation. 

Since F and DF are always the same at 7= 0, the change with profile is conviently re- 

presented in terms of the values at y = 1, tabulated as FF and A'   A' 

(l/DF DF^) I-',, for K = 0.   Here.Ai   is used because it determines the power level of 

the machine.    The powers are presented by using P /P   and the generator efficiency, s     o 
Viscous losses are not considered. 

The effect of varying a is shown in Table 3, where all data are for s = -1, and 

RM - '■ 
Surprisingly, the slit-channel results are valid to a much larger ya than expected; all 

cases tested for a = 0. 1 are close to the slit-channel predictions.   Even for the extreme 

,« Those for a = 0. 01 and 0. 1 agree with the slit-channel theory within 1%. 

case of a = 0. 1, sR M ■200, and |ya| =1.4 (Table 4), the powers are within 10% of 

the slit-channel theory and the efficiencies are even closer, despite the field variation 

across the channel.   Also P   and e   for a = 1 (Table 3) are within 10%, except for the 

parabolic profile.   Still to be checked for small ya is the difference of the velocity pro- 

file from Hartmann. 

Table 3.   Numerical integration results for the electromagnetic 

fields and powers, varying a, K = 0. 

i RM 
a Profile''' ™* y=l A"     A'* Afo Afo 

pJp
n s'    o eg% 

- 1.0 1.0 0.01 C 1.00 5. 00X 107 - 50.0 50.0 

P 1.00 5.00 - 50.0 35.7 

H-10 1.00 5.00 - 50.0 45.5 

H-50 1.00 5.00 - 50.0 49.0 

- 1.0 1.0 0. 1 C 1.01 4. 98 X 103 - 5.00 50.0 

P 1.01 4.98 - 4.98 35.7 

H-10 1.01 4.98 - 4. 99 45.5 

H-50 1.01 4,98 - 5.00 49,0 

- 1.0 1.0 1.0 C 2.58 0.359 - 0.518 50,0 

P 2.91 0.336 - 0.350 33.2 

H-10 2.67 0.356 - 0. 456 45.2 

H-50 2.60 0.359 - 0.504 49.0 

- 1.0 1.0 10.0 C 8,73 X 108 8. 10 X 10"12 - 0.322 50.0 

P 2,61 X 109 3.22 X 10'12 0.297 Pump 
H-10 1.32 X 109 7.22 X 10'12 0. 131 Damper 
H-50 9. 83 X 108 8.53 X 10"12 - 0, 160 43.6 

t CODE: C = constant velocity 
P = parabolic profile 
H - M = Hartmann profile, M = M 
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Table 4.    Comparison of slit-channel theory and numerical 

results, lyal = 1.4, K = 0. 

s RM a Profile FF*|~ , 
-- 'y^ 

A'    A'* fo    fo 
P /P s'    o ag% 

- 1.0 200 0. 1 S. C.   Theory 1.00 0.250 - 0. 0500 50.0 

c 1.68 0.239 - 0. 0543 50.0 

P 2.78 0.244 - 0.0471 32.8 

H-10 1.99 0.242 - 0.0527 45.2 

H-50 1.74 0.239 - 0. 0539 49.0 

For large ya the changes become more dramatic because the fields decrease 

rapidly away from the channel walls, as shown in section 3. 7, and the boundary layer 

controls the behavior of the machine.    If the field has decayed appreciably before the 

fluid velocity becomes greater than v , the machine will operate as a pump even though s 
the average slip is negative because the interaction of the central core is negligible. 

When both pump and generator effects are appreciable the machine may be a damper, 

but only when the fluid velocity rises quickly to the negative-slip region does the machine 

operate as a generator.    The operating regime switches from pump to damper to gene- 

rator as the profile becomes flatter and as the average slip becomes more negative be- 

cause the size of the positive-slip boundary region decreases.    The actual velocity pro- 

file will not be Hartmann for this case, as discussed in sections 4. 5 and 4. 6, because 

of the large field variations. 

The numerical results presented in Tables 3 through 6 illustrate these points.    For 

a fixed a, R      and profile as s becomes more negative the machine is successively a 

pump, damper, and generator.    The transition occurs at smaller |i| as the profile be- 

comes flatter, and at larger |s| as a is increased.    The power densities for all large 

ya cases are small and the profile effects are large, so that this region is to be avoided 

for energy conversion. 

The two cases shown for s = -10 are unusual because the power density and effi- 

ciency are higher for the nonconstant profiles.    This occurs when the field variation 

and slip are both large.    Then, since the fluid has not reached its maximum velocity 

before the field becomes negligible, the average slip seen by the field is less than the 

average for the fluid.    This may result in a higher efficiency, but it is not of practical 

significance because P /P   and e    are both low. 0 s'    o g 
The numerical integration procedure for the electromagnetic fields and powers 

works well, as shown by these results.   It is used again in section 4. 6, where the itera- 

tive procedure gives the fields, powers, and velocity profiles. 
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Table 5.    Numerical integration results for the electromagnetic 

fields and powers, varying s, a = 1, K = 0. 

s RM 
a Profile EL* 7=i A'     Ai* Afo Afo P /P s'    o eg% 

- 0.04 25 1.0 C 2.58 0.359 - 0.518 96.2 

P 22.7 0.00399 0.247 Pump 

H-10 5. 12 0.0815 0.325 Damper 

H-50 2.86 0.328 - 0.273 52.5 

H-80 2.74 0.347 - 0.374 68.7 

- 0.1 25 1.0 C 3.67 0. 0944 - 0.389 90.9 

P 31.9 0.00307 0.253 Pump 

H-10 8.28 0.0428 0.201 Damper 

H-50 4.32 0.0930 - 0.291 68.6   • 

H-80 4.06 0. 0945 - 0. 334 77.3 

- C, 4 25 1.0 C 27.3 0. 00359 - 0. 206 71.4 

P 125 0. 00109 0.264 Pump 

H-10 52.0 0.00401 - 0. 0205 8.58 

H-50 31.7 0. 00383 - 0. 187 63.9 

H-80 30.0 0.00375 - 0. 195 66.8 

- 1.0 25 1.0 C 340 1.18X 10"4 - 0. 139 50.0 

P 991 1.73 X 10"4 0.176 Damper 

H-10 574 1.72 X 10"4 - 0.0974 35.5 

H-50 389 1.30X 10"4 - 0. 134 48.6 

H-80 370 1.25X 10"4 - 0. 136 49.1 

- 10 25 1.0 C 

P 

1.34X 109 

1.97 X 109 

2.98X 10"12 

1.66 X 10"11 

- 0. 0446 

- 0. 0669 

9.09 

20.2 

H-10 

H-50 

2.15X 109 

1.65X 109 

6.01 X 10'12 

3.66 X 10"12 

- 0.0563 

- 0. 0464 

15.0 

10.7 

H-80 1.55X 109 3.40X 10"12 - 0. 0454 10.1 

4.5   VELOCITY PROFILE FOR A KNOWN PRESSURE  GRADIENT 

Equation 128 is solved for the fluid velocity profile when the vector potential is 

specified.    The profile obtained is the small sRM solution if the field with no fluid pre- 

sent is used, corresponding to the case when the field is not appreciably affected by the 

fluid.    More important, this serves as the second step in an iterative procedure to ob- 

tain the electromagnetic field and velocity profile for arbitrary parameters.   For small 

ya the solution will be close to the Hartmann profile, while for large yo. the field does 

not penetrate into the fluid, causing unusual profiles. 
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Table 6.    Numerical integration results for the electromagnetic 
fields and powers, varying, s a = 3,   K= 0. 

a RM 
a Profile Et 7=1 

A'     A' * Afo Afo P /P s'    o eg* 

- 0.04 25 3 C 182 4. 30X 10"4 - 0.322 96.2 

P 

H-10 

1.77 X 105 

2.26X 103 

2.67X 10"8 

3.44X 10"6 

0.149 

0.227 

Pump 

Pump 

H-50 311 1.89X 10'4 0.397 Pump 

H-80 253 3. 14 X 10"4 0.239 Damper 

- 0.1 25 3 C 

P 

869 

3.33 X 105 

4. 76X 10"5 

1.42 X 10'8 

- 0. 342 

0.149 

90.9 

Pump 

H-10 7.93 X'lO3 1. 14 X 10"6 0.245 Pump 

H-50 1.50X103 3. 74X 10"5 0.191 Damper 

H-80 1.23 X 103 4.81 X 10"5 - 0.0319 11.4 

- 0.4 25 3 C 

P 

3.33 X 105 

7.36 X 106 

3.32 X 10'8 

6.46 X 10"10 

- 0.212 

0.157 

71.4 

Pump 

H-10 

H-50 

1.23 X 106 

5. 03 X 105 

1.32X 10"8 

4.41 X 10"8 

0.296 

- 0.117 

Pump 

40.0 

H-80 4.36 X 105 4. 08X 10"8 - 0.170 55.2 

- 1.0 25 3 C 6.26 X 108 7. 09X 10-12 - 0. 139 50.0 

P 2.01 X 109 3.00X 10"12 0.191 Pump 

H-10 1.49 X 109 1.50X 10"11 0.182 Damper 

H-50 8. 94X 108 l.OOX 10"11 - 0. 122 44.0 

H-80 7.97 X 108 8. 88X 10"12 - 0.131 47.0 

- 10.0 25 3 C 3.89X 1028 1.14X 10"32 - 0.0446 9.09 

P 1.12 X 1028 9.86 X 10"31 - 0. 0239 8.39 

H-10 5.31 X 1028 6.14X 10"32 - 0. 0693 21.2 

H-50 5.72X 1028 1.97X 10"32 - 0. 0530 13.6 

H-80 5.30X 1028 1.67 X 10"32 - 0. 0496 12.1 

The solution of the nonhomogeneous Eq.  128 is more complicated than the solu- 
tion of the homogeneous Eq.  127.   Before there was only a homogeneous solution for 
specified initial conditions, which was scaled to match the boundary conditions.   Now 
there is a homogeneous solution and one or two particular solutions, depending on the 
approach used.   Initial conditions are specified, and then a linear combination of the 
solutions is used to match the boundary conditions.    This is harder because of the 
additional numerical solutions, and the linear combination at the channel wall involves 
the small difference between large numbers, limiting both the accuracy and the range 
over which the procedure will work. 
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The pressure gradient applied to the machine, p , is not an independent constant. 

The average fluid slip s must be the same as is used in calculating the electromagnetic 

field, and p   is adjusted to satisfy this condition.    There are two constants of the homo- 

geneous solution plus p   to be determined, and two boundary conditions plus the average 

slip to be satisfied.    The external fluid source is assumed to supply the necessary 

pressure across the machine. 

Several approaches to solving Eq.   128 were tested.    The equation can be rewritten 

as 

d2(t) 2 
a Po      ™2 

.v2 77 V 
dy '   s 

Ms , (154) 

where v/v   is the normalized velocity based on v   rather than v, and s(y) is the local 
£5 " S 

slip.    If s(y) is replaced by s, an approximate analytical solution can be obtained for 
"■- 2 v(y) by using the constant-velocity field for M .    This is the simplest approach, but it 

is unsatisfactory because the electromagnetic pressure gradient does not reverse sign 

for v(y) < v , or the pump region never exists.    This leads to unreasonable profiles, 

with the velocity reversing direction near the walls.    A typical solution for large ya is 

shown in Fig.  31 along with a later solution.    This is not valid even in the slit-channel 

limit; it gives the wrong profile — parabolic instead of Hartmann — because the right- 

hand side of Eq.  154 becomes a constant. 

To solve directly for the velocity requires two particular solutions because of the 

two driving terms.    Converting Eq.   128 into an equation for s(y) gives 

d2s          2 a po -S-f- - IVTs = -    -   0     .                                                                                              (155) r-2 Tjv                                                                                                  x       ' 
dy '   s 

The homogeneous solutions for s and u are the same, except for the constants, but 

solving for s requires only one particular solution. 

The numerical techniques used to solve Eq.   155 are the same as before.    The homo- 

geneous solution s.  is found by using the initial value one, with zero slope from sym- 

metry.    The initial values for the particular solution are that both s   and its derivative 

are zero at the center, and 

2 a p 
Pi = =   „   0 (156) 1 77V v ' 

'    S 

is taken as unity for the solution.    Since P, will be scaled, s (0) must be zero to avoid 

difficulty.    The solution is 
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Fig.  31.    Comparison of velocity-profile solutions by two methods. 

s(y) = Pj (A sh + s ). (157) 

The conditions still to be satisfied are that the average slip is s and that the slip at the 

wall is unity.    These give 

(ssh(l)-sh) 
(158) 

and 

Pl = 

(A ih + s ) 
(159) 

Difficulty occurs in evaluating the constants because the small difference between 

large numbers is required, since both the particular and homogeneous solutions are 

growing exponentials.    The addition of double precision, allowing the computer to carry 
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16 figures of accuracy, extends the range over which the solution will work but does not 

solve the basic problem.    Different equations for the constants were tested with no im- 

provement.    The maximum Hartmann number at the wall for which the program works 

depends on the machine parameters.    For s = -1 and RM = 1, the largest values of M(l) 

tested successfully were 22. 4 for a = 0. 1, 30. 4 for a = 1, and 266 for a = 10.    The 

marked variation occurs because for large a, M drops off rapidly into the fluid, so that 

the homogeneous and particular solutions at the wall are much smaller for the same 

M{1).    The program normally fails if the wall values of s.  and s   are greater than 

~10    , but this upper limit is adequate to show the important effects. 

The difficulty with the previous solution is the exponential-like behavior.    Defining 

a new variable 

g(7) = e■M(1, y s(7) (160) 

removes the growing sxponential.    The new equation is 

4|. + 2M(1)^+    (M(l)2-M2)g=P   e-M(1)? (161) 
dy dy 

where g(y) is roughly a decaying exponenti-l because M decreases toward the center of 

the channel.    The numerical method used in the other cases, method four, is unstable 

under these conditions, and method five must be substituted, as discussed in Appendix E. 

This change of variables does not solve the basic problem, and the results are worse 

than for the previous solution.   

The Hartmann profile is obtained for small ya, as predicted in section 4. 3, since 

the field does not vary appreciably across the channel.    All of the a = 0. 1 cases tested 

agreed with the Harimann profile based on M(0). 

For a = 1 the profile shape is changed from Hartmann, as shown in Fig.  32.    For 
2 this case M   varies by a factor of three from the center to the edge of the channel.    The 

velocity is plotted as v/v    because (v/v ) = 1 is where the force reverses direction. s s 
The quantity specified in the numerical computation is the normalized exciting current 

squared or force multiplier, 

Mf(NJ)2a 
FOR =       27^        ■ <162) '   s 

2 
which is dimensionally M /aR...    Then M(l) is determined from the boundary conditions 

and the fluid properties. 

For large ya the field does not penetrate into the fluid.    The flow consists of two 

regions:   a central core where the electromagnetic force is negligible and the profile 

is parabolic, and a region near the wall where the profile is Hartmann-like, with a 

sharp rise from zero velocity to synchronous velocity.    This is shown by the iterative- 

solution profiles of section 4. 6, which differ little from the profiles obtained here. 
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Curves for a = 10 and RM = 1 are shown in Figs. 37 and 38 for two different values of 

M   at the wall.    Both exhibit the same shape, with a much sharper rise for the higher- 

M case.    Comparison with the electromagnetic pressure gradient (Fig,  23) shows that 
2 .-* 

M   is down by one order of magnitude at y = 0. 9, after which the electromagnetic 

effects become negligible, which agrees with the figures.    Each graph has curves for 

three values of s, all with the same exciting current.    The wall shapes are practically 

identical, and only the central region is different to satisfy the average-velocity condi- 

tion. 
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0 1         1 | 
0 0,2 0.4 0.6 0.8 1,0 
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Fig. 32,    Comparison of velocity-profile solution with Hartmann profile, a = 1. 

Three curves for pump operation are plotted in Fig, 33,   Curves 1 and 2 show the 

effect of increasing M(l) for a = 10, while curve 3 is for a = 1.    For large a the velo- 

city virtually locks into synchronous speed near the wall, as occurred for s negative. 

64 



The shape for the 5 to 10% of the channel half-width near the wall depends primarily on 

a and M(l). and is almost independent of s.    This suggests that the iterative solution of 

section 4. 6 will give powers with little dependence on s for large ya, since only the wall 

region enters into the energy transfer. 
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8-0.1 

M(l)- 266 M(l)- 84 M(l)- 30.5 
- 

0 0.2 0.4 0.6 0.8 1.0 
y 

Fig.  33.    Pump velocity profiles. 

The velocity profiles presented illustrate the important behavior patterns despite 

the limitations imposed by the numerical procedure. Additional velocity profiles are 

shown in section 4. 6. 

4.6   AN ITERATIVE SOLUTION 

The techniques developed for solving Eqs.   127 and 128 are combined to obtain an 

exact solution for laminar flow by iterating.    The electromagnetic field for a constant 

fluid velocity is used as the, starting point, and Eqs.  128 and 127 are solved repetitively 

for the new velocity and field in that order, as in sections 4. 5 and 4. 4, until the solu- 

tion converges to the desired accuracy.    The convergence is good for RM small, but 

becomes worse as RM increases because the fluid profile has more effect on the field. 

All of the a = 0. 1 cases tested with the iterative procedure checked with the slit- 
2 channel results ^f section 4. 3, except for sRM = -250, where M   varied by a factor of 

three across the cku. ""nel and the profile was no longer Hartmann.    The small ya case 

is excluded from furuier consideration here as it is better treated by the methods dis- 

cussed in section 4. 3. 
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Some of the results for large ya are given in Figs.  34 through 38 and in Table 7. 
The velocity profiles are similar to those of section 4. 5, but the powers are different 
from those of section 4. 4, because of the large profile changes.    The initial and final 
iterations for the velocity profile are compared in Fig.  34 for one set of parameters. 
The difference is small, so that the profiles of section 4. 5 are approximately correct, 
but it may increase for larger RM.    The number of iterations required for convergence 
to five figures is given in Table 7, where > means that the result is close, but more than 
the number tried were required.    The number increases with increasing s and R.-, 

>\> 

1.2 

1.0 

0.8 

0.4 

s = - 1 
RM ' l 

a = 10 
(c = 0 
FOR = 10,000 

0.2 0.4 0.6 0.8 
y 

1.0 

Fig. 34.    Comparison of initial and final iterative solutions. 
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Fig.  35.   Iterative solution for velocity, a = 1, 

RM = 1. FOR = 1000. 

The velocity profiles for a = 1, RM = 1 and 10, are plotted in Figs. 35 and 36 for 

s = -0. 1, -1, and -10.    The R., = 1, s = -1 curve is almost identical with the initial 

solution (Fig.  32) except for a slight dip around y" = 0.6.   As yd increases this dip be- 

comes more pronounced, as is shown by the other figures.    The two s = -0. 1 curves 

look similar, but are quite different near the walls.    The power density and efficiency 

for s = -10 are still greater than for a constant fluid velocity, as occurred in section 

4.4. 

The profiles for a = 10 and RM = 1, Figs.  37 and 38, illustrate the effect of increas- 

ing the exciting current.    Both sets of curves show the strong field influence at the wall, 

but the electromagnetic dominance is more pronounced for the larger excitation and 

extends farther into the fluid.   None of thtHested a = 10 cases will operate as a genera- 

tor, since the pumping of the boundary layer dominates, as shown in Table 7. 
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Fig. 36.   Iterative solution for velocity, a = 1, 
RM = 10, FOR = 100, 

This concludes the laminar-flow solution for the induction machine.    The exact 
solution has been obtained for several sets of parameters, and can be extended to others 
if desired.    One important result is to eliminate the large yo. machine from further 
consideration.    Not only is the power density low, as shown in Section III, but it will 
not operate as a generator.   Odd excitation is also eliminated since ya » 1 is the only 

regime where it appeared attractive.    The slit-channel results will be used in Section 
VII to obtain predicted performance characteristics. 
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Fig.  37.    Iterative solution for velocity, a = 10. 

RM = 1, FOR = 1000. 

Table 7.    Iterative solution results, * = 0. 

Reference s RM a FOR M(l) P /P s'    o eg% 

Required 
Number of 
Iterations 

Fig. 35 - 0. 1 1 1 1000 41.3 - 0.0753 69.9 2 

- 1 31.0 - 0. 456 47. 1 4 

- 10 16.7 - 0. 168 10.3 > 5 

Fig.  36 - 0. 1 10 ii 100 31.0 - 0.287 57.3 > 3 

- 1 17.9 - 0.0388 13.8 > 5 

- 10 7.84 - 0.0957 17.8 > 5 
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Table 7.   Iterative solution results,  K - 0 (Cont. ). 

Reference s 
M a FOR M(l) P /P s'    o e % 

g 

Required 
Number of 
Iterations 

Fig.  37 - 0.1 1 10 1000 99.5 0.0937 Pump 2 

- 1 99.5 0.0885 Pump 5 

- 10 97.2 0.0443 Damper > 6 

Fig.  38 - 0.1 1 ii 10000 316 0.0310 Pump 3 

- 1 316 0.0302 Pump 5 

- 10 315 0.0238 Damper > 5 

Fig.  38.    Iterative solution for velocity,  a = 10, R.. = 1,   FOR = 10000 
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V.    TURBULENT FLOW 

The flow in a practical MHD induction machine will probably be turbulent,  because 

of the large velocities and Reynolds numbers R   required to obtain a reasonable power 

density.   The laminar-flow analysis of Section IV is important because turbulent flow is 

not susceptible to the same kind of analysis; solutions have not been obtained even for 

the simplest OHD (ordinary hydrodynamic) channel flows.   Turbulent OHD flows are 

discussed in section 5. 1, and the techniques of Section IV are used to examine the be- 

havior of the induction machine in the limit of small electromagnetic forces, when the 

velocity profile is that of OHD turbulent flow.    The available information on turbulent 

MHD flows with a DC transverse magnetic field is summarized in section 5,2.    The 

effect of a traveling electromagnetic field on turbulent flow is considered briefly in 

section 5. 3,  but is hampered by the lack of experimental information.   Finally,  boundary- 

layer theory is applied in sections 5.4 and 5. 5 to laminar and turbulent flows.   This has 

been established as a valuable technique for handling OHD flows, and is shown to be use- 

ful for induction-coupled MHD flows. 

5. 1   EXPERIMENTAL TURBULENT HYDRODYNAMIC VELOCITY PROFILES 

In turbulent flow the simple picture of laminar flow or flow in layers is no longer 

valid.    Instead there is violent eddying and momentum transfer in the direction perpen- 

dicular to the average flow, and this has the effect of averaging the velocities or reducing 

the velocity gradient over the central part of the flow.     Near the walls there are sharp 

gradients as the wall velocity is zero.    This flow pattern causes a marked increase in 

the viscous loss for the same flow rate over that with laminar flow conditions if laminar 

flow could be attained. 

Although OHD turbulent channel flow has not yielded to analysis, sufficient experi- 

mental data are available to obtain a good picture of the structure of the flow and the 
47 velocity profile.    A description,  which is due to Harris,    follows. 

There is a central core occupying perhaps 90 per cent of the channel volume 
in which the mean velocity varies slowly with position, the velocity fluctua- 
tions are only a few per cent of the mean velocity, and dissipation effects are 
practically negligible.   There is a very thin laminar region near the wall 
(known as the laminar sub-layer] where dissipation effects are controlling; 
the mean velocity increases linearly with distance from the wall, and fluctua- 
tions are small or nonexistent.   This region usually occupies less than 1 per 
cent of the channel volume.   In between is the transition region, an area of 
great activity where the velocity fluctuations are comparable to the mean 
velocities and where most of the power driving the flow is dissipated. 

The shape of the OHD turbulent profile. Fig.  39, is similar to the Hartmann profile 

except for the transition region.   Three equations that fit the experimental profile data 

are presented and compared, and then tested by using the techniques of Section IV. 
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Fig.  39.   OHD turbulent velocity profiles. 

The transition between OHD laminar and turbulent flow is determined by the 

Reynolds number 

PvDh 
Re =~lj ; (163) 

where 

D. 4 (cross-section area of flow) 
—     (wetted perimeter) (164) 

is the hydraulic diameter for a channel of arbitrary cross section. For flow between 

two parallel plates of infinite width spaced a distance 2a apart, D. = 4a. The flow is 

turbulent for R   greater than approximately 2000. 

The simplest velocity profile with a reasonable fit to the experimental data is the 
/, /  xth ,     48 (1/n)   -power law. 

u(y)  *(n±l)(i.?ynf (165) 
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retaining the normalized notation of Section IV where n, a function of R , is often taken 

to be 7, although it varies from 6 to 10 as shown in Table 8.   The numbers are approxi- 

mate because the values of R   considered here do not correspond exactly to the experi- 

mental measurements.   This profile is not valid near the center of the channel because 

the slope is not zero, and at the edge the slope becomes infinite. 

A better profile, obtained by fitting a different curve to each of the three regions 

mentioned earlier, is the "universal velocity distribution" law.   The equations are 

v = | 

v = 5. 0 ln(0   - 3. 05 

v = 2. 5 ln(|) + 5. 5 

?<5 

5 <| < 30. 569 

30.569 <4 

(166a) 

(166b) 

(166c) 

for the laminar sublayer, transition region, and turbulent core, respectively, where 

Re  rr 
"IT Vl d-y) (167) 

depends on the distance from the channel wall, (R /SX^f/Z) is the "friction Reynolds 

number" based on wall shear stress, and In denotes the natural logarithm.   The velocity 

has to be normalized by numerically calculating v and dividing Eq.  166 by v.   The fric- 

tion factor f, defined in Eq. D. 18, is found as a function of R   from the experimental 
50 e 

data of Moody.       Several typical values are given in Table 8.   The slope at the center 

of the channel is again not zero. 

Table 8.   Turbulent velocity profile information. 

Re n48 f50 
Re rr 
8    V 2 

104 6.8 0. 0305 1.5 X102 

105 7 0.0178 1.2 X103 

106 8.8 0.0117 9. 6 X 103 

107 10 0. 0082 8. OX 104 

A third profile is obtained by neglecting the transition region of the previous 

profile.   Only Eqs. 166a and 166c are used, with the intersection of the two curves at 

|=11. 63.   For the numerical values of interest, large R , the difference between the 

two profiles is negligible because the transition to the turbulent core occurs in less 
ß 

than 1% of the channel half-width for R   > 10 .   Therefore this profile is not considered 

further. 
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The normalized velocity profiles for the (1/n)   -power law and the "universal 

velocity distribution" law are compared in Fig.  39 for R   = 10 .   The difference is 

quite small, and is certainly less than the change caused by adding a magnetic field. 

A better comparison is shown in Schlichting,    where both the various approximate 

equations and the experimental points are plotted on a log scale.    Also shown in Fig. 39 

is the Hartmann profile for M = 50, which is flatter in the center but has a smaller 
4 

slope at the wall.   The fourth curve is the universal profile for R   = 10 .   As R   is de- 

creased the profile becomes more rounded.   The sharp discontinuity in the slope near 

y = 0. 8 is due to the transition between the two logarithmic equations. 

The velocity profileis not changed significantly from the OHD turbulent profile if the 

electromagnetic force is small.   In this limit, which is not of practical interest except in 

MHD flowmeters, these known profiles can be used with the methods of section 4. 4 to find 

the electromagnetic fields and powers.   The techniques are the same,  but care must be 

used with the turbulent profiles in numerical calculations: 100 points across the channel 

half-width is not sufficient,  lOOOpointsappears to be a minimum, and more are desirable. 

The profile factors and generator efficiency for a slit channel can be evaluated as 

in section 4. 3.   The results for e   are shown in Fig. 40 for the 1/n profile and in 

Table 9 for both profiles for several values of the average slip.   Values of e   for the 

universal curve are not plotted because of the lack of a general equation.   The universal 

profile is slightly flatter for large R   and gives a higher efficiency, but the reverse is 

true for small R .    The results agree well with the Hartman profile for large M; the 

n = 10 case is virtually identical to M = 60 despite the different shapes. 

l.O 
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"                               A         4 

8   -   -0.01 

8     n     ' 10 11 

Fig. 40.   Slit-channel generator efficiency for 

(1/n)   -power law turbulent profile. 
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Table 9.   Slit-channel generator efficiencies. 

Universal Velocity Distribution Law (l/n)th-Power Law 

i\B= 104 105 106 107 104 105 106 107 

-0,01 
-o.i 
-i.o 

0.159 
0.579 
0.453 

0.354 
0.760 
0.483 

0.500 
0.822 
0.491 

0.599 
0.849 
0.494 

0.338 
0.751 
0.482 

0.380 
0.774 
0.485 

0.480 
0.815 
0.490 

0.538 
0.833 
0.492 

5. 2   TURBULENCE AND DC MAGNETIC FIELDS 

The presence of a transverse DC magnetic field tends to suppress turbulence. 

There are two possible mechanisms for this:   damping of the random eddying motion 

caused by induced currents and forces, and the change in the velocity profile due to 
52 the MHD body force.   Murgatroyd      found experimentally that   the flow is turbulent for 

R /M >  900, which for large M represents a considerable increase in the range of R 

for laminar flow. 

The change in the viscous loss with the transition from laminar to turbulent flow is 

of considerable interest.   For OHD flows there is a marked increase.   For MHD flows 

the only experimental measurements available are for the total pressure drop across 

the channel length, including both viscous and circulating-current losses, with no way 

to separate them until the velocity profile is measured.   The total pressure increases 

with the transition from laminar to turbulent flow, but it is not possible to determine 

the ratios of the viscous losses for the MHD laminar, MHD turbulent, and OHD turbulent 

cases.    The small-scale circulating currents induced by turbulence, which do not con- 

tribute either to the viscous loss or to the circulating-current loss resulting from the 

time-average velocity, should also be considered.   The present theory includes the 

circulating current loss in P , so that only the viscous and turbulent-current losses are 

desired. 
53 Harris      has studied turbulent MHD flow using semiempirical techniques and the 

54 52 experimental results of Hartmann and Lazarus,    and Murgatroyd.      He obtained an 

equation for the friction factor for the total pressure drop with no external electrical 

connection to the fluid, given in Eq.  D. 24.   He also derived the theoretical time-average 

velocity profiles for turbulent flow shown in Fig. 41.   The shape is determined by the 

"friction Reynolds number" and "friction velocity" based on the wall shear stress T   as 

in OHD flows, and also by M.   For small M   the profile is the OHD turbulent profile, 

while for large M it approaches the Hartmann shape, but a much larger M is required 
2 

for the same degree of flatness.    The more rounded profile means increased I R losses. 

As the curves are bounded by the OHD turbulent and Hartmann profiles, they do not add 

much additional information, and are not considered using the techniques of Section IV. 

There is some question as to their general validity because they are based on the same 
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analysis as the friction factor predictions made by Harris, and these do not extrapolate 
CO 

from the earlier data to fit a more recent experiment.     Experimental studies of velocity 
profiles are needed to check his results. 

V 

Fig. 41.   Theoretical MHD turbulent velocity profiles of Harris. 

5. 3   TURBULENCE AND TRAVELING ELECTROMAGNETIC FIELDS 

The situation is more complex for a traveling electromagnetic field, and there are 
no experimental results available.   The electromagnetic force acting on the fluid changes 
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both magnitude and direction with time.   This should decrease the stability of laminar 

flow, and possibly increase the turbulent losses. 

The effect of the electromagnetic force on the flow is determined first.   Taking the 

curl of Eq. 5g and defining the vorticity 

w = V Xv, (168) 

gives 

p|^-=  pV   x (v Xw)+T;V
2

W +V x(JXB). (169) 

For comparison purposes consider the case of a DC magnetic field. Hartmann flow. 

Here 3 is a constant, but J is an exponential function of y.   The curl of J X B is not 

zero, and this changes the velocity profile.   The DC magnetic field stabilizes laminar 

flow, however, despite the nonzero curl of the electromagnetic force. 

It is impossible to find a general expression for V x (J X B) for the induction 

machine because J and B are both functions of the velocity.   Consider only the case of 

an x-directed velocity depending only on y and a z-directed current, as in Section IV. 

Care must be used to take the real part before the cross-product is evaluated.    Writ- 

ing the time functions as 

F(x,y,t)   =-1 JF(y)eJ(wt-kx) + F*(y)e-J(wt-kx)j (170) 

simplifies the calculation.    The result is 

Vx (J X B) = T 4^ (w - vk) (B* B^ - Bv B*) z  «  x y      x    y 

+T ? (&.)(B   B   eJ2(wt " kx)   + B* B* e-J2(ü,t " kx) + 2Bv B*  ) 

(171) 

Only for the special case of a constant velocity is this independent of time.   Other- 

wise there is a time dependence that will be particularly large in the transition region 

near the wall where the turbulence is normally generated.   The possibility thus exists 

for coupling between the traveling field and the generation or turbulent eddies in the 

fluid.   The electromagnetic force should make laminar flow less likely because of the 

time-dependent curl and the pulsating force.   On the other hand, it will also have a 

stabilizing influence because the small-scale induced currents   and forces due to turbu- 

lence act to damp out turbulence as in the DC case.   The net behavior depends on which 

mechanism predominates, and this can only be determined by experimental study. 
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5.4   LAMINAR BOUNDARY-LAYER THEORY 

In boundary-layer theory the fluid flow is split into two parts: 

1. A region near the wall in which viscosity is important, and where there are 

large velocity gradients normal to the wall. 

2. A region away from the wall where viscous forces are negligible, no large 

velocity gradients occur, and the flow is essentially potential flow. 

A common example is flow over a flat plate of finite length or around an obstacle of 

dimensions small compared with those of the flow field.   The flow can be solved under the 

assumption of an inviscid fluid and potential flow to determine the gross behavior, and 

viscosity is then considered only in the thin layer along the body because the fluid velo- 

city is zero at the wall. 

In OHD flows the viscous forces in the boundary layer are balanced by inertial 

forces.   The fluid slows down, and the boundary-layer thickness must grow along the 

surface to satisfy conservation of momentum.   For channel flow the boundary layers 

will grow from the entrance until they meet, after which the viscous force is balanced 

by the pressure gradient, so that boundary-layer theory is valid only for determining 

the entry length. 

In MHD channel flows electromagnetic terms are added to the force balance, and 

this allows the thickness of the boundary layer to stabilize at some finite value.   If the 

boundary-layer thickness 6 is small compared with the channel half-width a, the channel 

flow can be represented by a central core where the velocity is constant and the electro- 

magnetic force balances the pressure gradient and a thin boundary layer where viscosity 

and velocity gradients are important.    This description bears a   qualitative relation to 

Hartmann flow, and the analytical results are similar. 

Boundary-layer theory is introduced in OHD flows because exact or approximate 

solutions can be obtained for cases where the complete Navier-Stokes equation cannot 

be solved.    These include flow over a flat plate of finite length and flow around a cylinder. 

It can be applied to laminar flow directly, and to turbulent flow with the use of experi- 

mental measurements.   Two approaches are available - a differential form obtained 

from the Navier-Stokes equation with small terms neglected, and an integral form as 

used here.    The differential form is used for laminar flow to obtain both the velocity 

profile in the boundary layer and the boundary-layer thickness, but solutions are diffi- 

cult to obtain even for simple geometries, and only a few solutions are available.   The 

integral form neglects the details of the boundary layer; a velocity profile is assumed 

and 6 is determined as a function of this velocity profile.   The results for this approxi- 
57 mate method are within a few per cent for OHD laminar flows, as shown by Schlichting. 

For turbulent flows insufficient knowledge is available to use the differential form, and 

the integral form can be solved only with the aid of experimental data.   For a thorough 
en ~ 

discussion of boundary-layer theory applied to OHD flows, see Schlichting. 
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In the following discussion boundary-layer theory is applied to the MHD induction 

machine.   The integral equation neglecting the entrance region is derived and solved for 

laminar flow in this section, and for turbulent flow in section 5. 5.   The advantage of 

boundary-layer theory is in treating turbulent flows, since the laminar solution can be 

obtained directly from the equations, but there are difficulties in its use for MHD flows. 

The integral form of the force-balance equation for the boundary layer is obtained 

according to the model of Fig. 42.   The x-directed forces acting on the small volume 

are the wall shear stress T , the pressure gradient, and the electromagnetic force, 

J«   Bf   for the induction machine.   Only the constant boundary layer, 6 independent of x, 

is considered, so that there is no net transport of momentum into the volume.   Since 

the fluid velocity in the central region is a constant, v , no shear stress acts on the 

upper surface of the volume.    The force equation in the x-direction, taking the limit as 

Ax—*-0, is 
6 6 

To + j     ^-dyi + /     JfZ
Bfydyi=  0 (172) 

o o 

for a unit length in the z-direction and no dependence on z.   A new variable y. has been 

defined as zero at the wall for convenience.   The force balance equation for the whole 

channel also required is 

To 

a. a. 

+ l   i£rdyi+f   JfZ
Bfydyi = 0' <173) 

using symmetry about the center.    Cancelling out the part contained in the boundary- 

layer equation leaves 

d c 

JfZ
Bfydyl = 0- (174) 

This determines the pressure, which is then eliminated from Eq. 172. 

The general solution for the induction machine is prohibitive because the electro- 

magnetic field depends on the velocity, requiring a self-consistent solution to the coupled 

equations, and there is a transverse force so that dp/dx depends on y...    Also, since the 

electromagnetic force varies across the channel, the velocity should also vary as shown 

in Section IV, and the model used here of a constant-velocity core is no longer valid. 

For these reasons attention is restricted to a slit channel, which has already been es- 

tablished as the only case of practical interest. 
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Fig. 42.   Model for boundary-layer analysis. 

For a slit channel the magnetic field was shown in section 4. 3 to be independent of 

the velocity profile. In terms of the constant vector potential, the time-average pres- 

sure gradient is 

p   = ffJc    (v    - V ) 'o IS        o 

A? 
(175) 

from Eq.  174, which does not depend on y..    Restricting attention to laminar flow, the 

wall shear stress is 

r0*ri dv 
a?! (176) 

y^o 

In terms of the effective Hartmann number for the AC field, Eq.  126, and by using 

Eqs. 175 and 17(1, the time average of Eq. 172 can be written as 

dv 
ay; 

M 

yi = 0 / 
vdy ,      v   6 1      o 0, (177) 

which determines 6 and T  for a specified velocity profile.   Although derived here for 

the induction machine, it is equally valid for the IDC machine because of the assumptions 

made. 

The velocity profiles tested in Eq. 177 are the linear, second-order, third-order, 

etc., profiles, and a sinusoidal profile.   The boundary conditions are that the velocity is 

zero at y. = 0 and v  at y- = 6 for all profiles, and that the higher-order profiles have 
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the proper number of zero derivatives at y- =  6.   The profile equations in terms of the 

normalized dimension y- = y^/ß, and the results for the normalized boundary-layer 

thickness 6/a and the normalized wall shear stress lT0/(nv0/a)], which are proportional 

to 1/M and M respectively, are given in Table 10. 

A more convenient parameter than 6 is the displacement thickness 

6* /      i1'   X)   dyi' a78) 

which is the distance the channel wall would have to be moved in to maintain the same 

volume flow rate if the velocity was constant at v .   As the velocity profile becomes a 

better approximation and a smoother transition occurs at y- = 6,    6—► oo because the 

approach is asymptotic.   This is not true for 6*, which has the same proportionality con- 

stant as T  for laminar MHD flows, since o 

from Eqs.  177 and 178. 

The displacement thickness and T  are also given for the Hartmann profile for 

M>4, but 6 is not defined since the velocity approaches v   asymptotically.    Both 6* and 

T  are low for the boundary layer or  approximate solutions, and approach the Hartmann 

solution only for large n.   As n becomes infinite the series is the expansion for the 

Hartmann profile, and the solution is exact.   The variations among the boundary-layer 

solutions and the differences from the exact solution are worse than for the comparable 
57 

OHD flow over a flat plate, where these amount to only a few per cent. 

The entrance problem is also of interest.   To carry this through properly the 

coupled interaction of the field and velocity has to be solved.   For a slit channel the 

field does not depend on the profile, so that the field results of Section VI can be used 

to solve for the fluid entry length.   For this solution the momentum transfer to the 

boundary layer has to be included, and 6 and the electromagnetic force depend on x. 

Because of the complex field solution this is a difficult problem, and is not considered 

here. 
59 

Moffatt     has treated the entrance to a DC magnetic field with no x-variation.   He 

finds 

fSM2   _x l\l/2 

^\1 - e      ''   " - I (180) 
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Table 10. 6, 6*, and T for a laminar boundary layer. 

v 
v_ 

(6 /a) 
(l/M) 

(6*  /a)     [ To/(7?vo/a) 

(l/M)   = M 

2^ - yf 

Syj " 3y1   +yJ 

1 

n'     order* 

s'"(fyi) 

Hartmann, M>4 

V2~= 1.414 

Vis"= 2.449 

yßj = 3.464 

\/(n + 1) n 

y 2(^-2) = 2. 085 

I = 0. 707 

816 

866 

/ n 
V n + 1 

V-2 
= 0.749 

v ~        n(n- 1) ~2     n(n- 1) (n - 2) ~3 
v--= "^i *     2r~y i        ^        y - 

o 
31 M-ir1^ 

for laminar flow using the second-order velocity profile, where R' =(pv a/77) is based 

on the maximum velocity.    Considering the exponent as an entry length, the number of 

wavelengths required is 

6 
R'a e 

lOirM 
(181) 

which may be large for reasonable power densities. 

The laminar boundary-layer solution does not add to the methods available for 

treating the induction machine.   It differs little from the Hartmann profile and approaches 

it for better approximations to the velocity profile in the boundary layer.   The advantage 

of boundary-layer theory lies in treating turbulent flow, where other analytical methods 

are not applicable and experimental measurements are not available. 

5.5 TURBULENT BOUNDARY-LAYER THEORY 

The extension of boundary-layer theory to turbulent flow should include: 

1. The use of an MHD turbulent profile in the boundary layer. 

2. The effect of turbulent flow on the wall shear stress. 

82 



2 
3. The additional losses,  both viscous and I R, due to the turbulence. 

4. The effect of the turbulent core on the boundary layer; i.e., the momentum 

transfer from the core to the boundary layer, if any, and the change in the boundary 
fin 

conditions on the boundary layer due to fluctuations in the core. 

In OHD turbulent boundary-layer theory the first three points are satisfied by 

using available experimental data.    The fourth point is not well understood, and is 

generally neglected.    Since suitable experiments for MHD flows are nonexistent,  it is 

not possible to properly extend the MHD theory to cover turbulent flow.    Instead,  MHD 

turbulent flow can be treated approximately by using the OHD experimental results for 

the velocity profile and wall shear stress.   The profile shape is wrong, but is not too 
2 

critical,  provided 6*/a is small.    The I R turbulent loss, for which no OHD equivalent 

exists, is not included in this approach. 

The 1/7   -power velocity profile and associated wall shear stress, 

1/7 

vo 

and 

fp#-) To  =   pv^  (0.0225) f7^7r] 1  4. (183) 

from experimental pipe-flow data are used as in OHD turbulent boundary layers.   These 

are based on v   and 6 instead of v and a, as is the custom for pipe flow.    This is valid 

for moderate Reynolds numbers.    Better accuracy might be obtained from the "universal 
fi9 

velocity distribution" law,  Eq.  166, but this is too complicated to use here. 

Rewriting Eq.  177 to include this profile and solving gives 

! = nr1 <«V3/5 <184> 

To 

/T/v    \ 3/5 
(—2-)M(0. 0317)    (R*) (185) 
*      3       ' C 

and 

6*   =  |   . (186) 

where 

R* = ^r (M) "8" 
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is the Reynolds number based roughly on 6 and v 

ratio of the average to maximum velocities is used.    This yields 

To relate Re to Re (Eq.  163), the 

v        .,       6* 
vo a ' 

(188) 

so that 

Re = R*(4M)(l-   °1). (189) 

Here R , the fundamental parameter, is determined by the flow independently of the 

actual profile.   This theory is invalid if (6*/a)> l(i.e., the boundary layers meet), and 

is expected to be inaccurate if 6*/a approaches 1. 

The variation of 6*/a with Re and M is shown in Fig. 43.   The range of applicability 

of the theory increases with M since the larger electromagnetic force limits the spread 

of the boundary layer.   The theory becomes invalid where the curves depart from a 

straight line.   They are almost straight up to about 6*/a = 0.1, after which the curvature 

increases rapidly.   The continuing straight line is drawn lightly for M = 50 to show this. 

The M = 500 curve has a similar behavior for larger R .   The theory is probably in- 

valid for 6*/a > 0. 2,  shown dashed in the figure, where the departure becomes appreci- 
able. 
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Fig. 43. 6*/a as a function of R   and M. 
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It is convenient for turbulent flows to use the friction factor, defined in Eq. D. 18, 

to calculate the viscous pressure drop and power loss.    For this theory it is 

1 

a/     ^e' 

f = (0-254)  /      \^2     275- (190) 
(1 - ^-1    (R*) 

2 
This does not include the pressure drop due to the I R losses in the fluid. 

Graphs of f as a function of R   for M = 50,  100, and 500 are given in Figs. 44 

through 46.   These differ from the conventional method of plotting f for MHD, but are 

more convenient for comparison and calculation purposes.   Also shown are the friction 

factors for OHD turbulent flow,  Eq. D. 23, and for DC MHD laminar and turbulent flows, 

Eos. D. 21h and D. 24.   D-C MHD flows are turbulent for R /M > 900, while induction- 

driven flows are probably turbulent for a smaller ratio.   Equation D. 24 for turbulent 

flow, obtained by Harris from experimental data, is valid for (M /\fR ) >  0. 053, which 

leaves only a limited range of applicability for the equation.    Because that curve lies so 

close to the others, its ends are marked by short vertical lines. 

The boundary-layer solution lies remarkably close to the MHD turbulent curve 

obtained by Harris, with a difference that is probably smaller than the experimental 

error.    Both curves lie above the OHD curve (except for large R ), as expected,  but 
2 e 

since the experimental curve includes both viscous plus I R losses, it should be above 

the boundary-layer solution. 

The boundary-layer solution breaks down, as mentioned already, when 6*/a becomes 

close to 1.   Arbitrarily picking the limit of validity where the friction-factor curve starts 

to turn up (shown dashed in the figures), gives roughly the same maximum R   as deter- 

mined from the 6*/a curve.    This may be rather liberal, and tighter restrictions are pro- 

bably required. 

The OHD and MHD turbulent friction-factor curves cross for large R .   It is 

questionable whether this will actually occur, but further study is required. The boundary- 

layer solution should probably curve up, as does the f from Eq. D. 24. 

It is not possible to estimate the accuracy of the MHD turbulent boundary-layer solu- 

tion without experimental information.   It does appear reasonable, however, when com- 

pared to the previous results for the friction factor,   and will be   used in Section VII when 

applicable because it is the best that is available.   There is an urgent need for further 

experimental measurements on both DC and induction-coupled turbulent MHD flows. 
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Fig. 44.   Friction factors, 
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VI.    THE  MACHINE OF FINITE LENGTH 

6, 1   INTRODUCTION 

The regions where the fluid enters and leaves the traveling magnetic field have 

not been considered in the previous analysis.    For a machine that is not long compared 

to the entry length, severe discrepancies may exist between the predictions based on an 

infinite-length machine and the actual operating characteristics.   We shall now deter- 

mine the field solution, coil impedance, and powers for two models of the finite-length 

machine - an ideal^iron core of infinite length, and a lossless core of arbitrary per- 

meability and infinite length.    The extension of the theory to other models is discussed 

but not carried out because of computational difficulties. 

Before turning to the mathematical details, valuable insight is provided by a quali- 

tative examination of the problem     The vector potential for a moving fluid is deter- 

mined from Eq.  9, which can be written 

f)A 1        o -*.    _». _► 
157-=      „V   A + vXVXA. (191) 9t       /icr v      ' 

The normalized form of the equation is similar except that ßa is replaced by Rn^p. the 

magnetic Reynolds number based on the fluid rather than the synchronous velocity. 

The time rate of change of A is due to diffusion and convection, represented respectively 

by the two terms on the right side of Eq.   191.    If Riyfp is small diffusion dominates, 

there is little change from the stationary fluid solution, and the fringing at the two ends 

is the same.    The solution is symmetric about the ends of the coil if the core extends 

well past the ends. 

With RMF large convection dominates, the fields are different at the two ends, 

symmetry is destroyed, and a substantial entry length is required for the field to diffuse 

into the fluid.    At the entrance the field is small outside the machine, and there is a 

considerable change in the field inside from the infinite-length field.    Breaking the field 

into two components, the excitation field which would exist with no ends and the pertur- 

bation field owing to the ends, the perturbation field is small before the entrance and 

comparable to the excitation field just inside the entrance.    The decay length   for the 

perturbation field inside the machine is appreciable, on the order of several wave- 

lengths for practical machine parameters.    For the perturbation field and associated 

powers to be small, a machine must be long compared to the decay length.    At the exit 

the roles are reversed, the perturbation field is small inside the machine, large out- 

side.    The excitation field exists only inside the machine. 

*The length for the field to attenuate to l/e of its original value. 
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This gives an idea of the change in the powers due to the finite length.   Since it 

takes a considerable distance for the field to penetrate into the fluid, the primary effect 

of the entrance is to reduce the power level because the field and power density are 

small near the entrance.    There is some additional electrical loss due to the ends, but 

for a machine with a substantial central region where the perturbation fields are small, 

the decrease in the power level may be large, yet with an electrical efficiency that is 

almost unchanged from the infinite-length machine.    (The over-all efficiency is de- 

creased, however, because less output power is obtained for the same viscous and ex- 

citation losses.)   This is primarily an entrance effect as the perturbation field inside 

the machine is small at the exit. 

6.2   TRANSFORMED POTENTIALS 

The model to be analyzed. Fig. 47, differs from that for the infinite-length machine 

only in the finite length nA of the exciting surface current, where n is in fractions of a 

wavelength.    Consideration of a core of finite length is outside the scope of this investi- 

gation for the reasons discussed in section 6.6,    The fluid velocity is assumed to be 

constant and x-directed to uncouple the equations and allow an analytical solution to be 

obtained.    The field solution is independent of the velocity profile for a slit channel, the 

only case of practical interest, so that the fluid velocity can be determined for this case 

after the field solution by using the techniques of either Section IV or Section V. 

The electromagnetic field equations are unchanged by the finite length.    The vector 
i ^t potential is still in the z-direction and independent of z, and must nave tne same e1 

dependence as tne exciting current, but now the e ^ x dependence of the excitation is 

preserved only in the driven part of the solution.   Spatial transients, determined by the 

natural behavior of the system, exist because of the finite length.    Writing Eq.  9 for the 

complex amplitude A. (x,y) gives 

8Af 

V2 A^ - jRMk2 Aj - RMFk   -^f- = 0 . (192) 

and a similar equation for A (x,y).    Here 

Mforfv 
RMF = RM^ " s) =   "IT-   ' (193) 

the magnetic Reynolds number based on the fluid velocity, is the important parameter 

for the perturbation field solution since it controls the ratio of convection to diffusion 

for the field. 

The normal method of solving boundary-value problems is to determine the natural 

modes in each region from the geometry, and then use the boundary conditions to find 

the constants.    Here the modes are not evident except for the special case of an ideal 
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Fig.  47.    The Model. 

core, considered in section 6.3.   Instead, the double-ended Laplace transform of the 

x-variation is taken, and then the boundary conditions are used.    This gives the total 

solution at once, provided the inverse transform can be evaluated. 

The transform used is 

oo 

Af (p.y) =     /     Af (x,y) e"pkx dx . 
— J-oo — 

(194) 

where p is the complex transform variable, normalized with respect to the wave number 

k of the excitation.    The transformed equations are 

9    Af(p,y) 

ay 
k2 [p2 -JRM-

R
MF

P
] ^f(P'y) = 0 • (195) 

and 

9   Ac(p.y) 

9y 
k2   [ P2 " JRMc ]   S{P'y) '- 0- (196) 

These are identical in form with Eqs.  66 and 69, so that the y-dependence will again 

be an exponential.    Using symmetry and the boundary conditions at the fluid-core inter- 

face, the solution is 

Mf K(P) cosh Y (P) ky 
VP'^ =   k [YiP) sinhy(p) a + *6 (p) coshy(p)Q]    for 'y' £ a (197) 

and 
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MfK(p)e-6(P)k(lyl-a) 
AJp.y) =  i  for |y| > a . (198) 

where 

[y(p)] 

k [ y (p) tanh y (p) a +  K6{p)] 

P   +JRM + RMFP' (199) 

and 

[6(P)] 2 
P2+JRMc (200) 

have the same form as before but now depend on p, and K(p) is the transform of the ex- 

citing current. 

For a uniform traveling current of length nA , 

NI Fl - e"(P +^ 2'rnl 
^P)-NIL1     ek(p+j) =,   • (201) 

This is the sum of a positive step at x = 0 and a negative step at x = nA, so that super- 

position can be used to find the total field solution.    The field due to the positive step 

is calculated first.    The field due to the negative step at the exit is then the negative of 

this, delayed in space by a length nX, and with the appropriate phase shift required for 

the negative step, e ^      .    The phase shift is zero if the machine is an integral number 

of wavelengths long.   It is not necessary to carry the negative step throughout the cal- 

culations; it is used only as needed for the exit fields and powers. 

The transformed vector potential in the fluid is 

^fNI    1 - e"(p + j) 2irn    cosh yky 
A,(p.y) = -^ ' (202) 
—* k (p + j) (y sinh y a + JC6 cosh y a ) 

where the dependence of y and 6 on p is not explicitly indicated.    The inverse transform 

of this is evaluated as a contour integral, which is the sum of the residues at the poles 

enclosed within the contour.    The poles are the values of p at which the denominator is 

zero.    One pole is 

Pe = -J ^ (203) 

due to the excitation, and this gives the field with no ends.    The other poles are deter- 

mined by 

y sinh ya + *f6 cosh ya = 0, (204) 
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There is no general solution for Eq.  204, but an analytical solution for the poles is 

known for an ideal iron core,   '      treated in sections 6. 3 and 6. 4.    The solution for a 

lossless core of arbitrary permeability is discussed in section 6. 5, and the extension 

to include core loss is mentioned in section 6. 6.    Numerical solutions are required for 

these cases. 

6. 3   THE IDEAL CORE - FIELDS AND IMPEDANCE 

For an ideal iron core, JC = 0, the natural poles, determined by 

y sinh y Q = 0, (205) 

occur when ya = jiir, or when 

±      RMF 
Pi = -r- i ± J^ Ji 

lMF TT^if 
2iir 

MF/ 
(206) 

The ± sign of p. goes with the sign before the radical.   The natural response depends 

on RMF rather than RM, as expected, because the ratio of convection to diffusion deter- 

mines the end fields. 

The transform is not essential for this case as the modes can be determined from 

the boundary conditions at the ideal iron core.    The x-component of the perturbation 

magnetic field is antisymmetric, and must be zero at the coils since the surface current 

matches the excitation term.   This is satisfied only by a vector potential proportional to 

cos (ijry/a), wiiere i is an integer.   Assuming an x-dependence of the form e^     and 

substituting in Eq.  195 gives Eq.  206 for p..    The coefficients of the cosine terms, de- 

termined from the boundary conditions at x = 0 and nA, agree with the transform re- 

sults.    The excitation vector potential is essentially independent of y for a slit channel, 

so that only the two i = 0 terms are required from the Fourier series to satisfy the 

boundary conditions.    This establishes that the other terms are small for a practical 

machine.    For a non-ideal core the field is not zero at the walls, and the transform 

approach is accordingly needed. 

The residues at the poles are given by 

Res j Af (p.y) j ±   = k (p - pi ) Af (p,y) (207) 
P= P; 

To evaluate this, the denominator is expanded in a Taylor series about the pole, 

y sinhya = (-l)1a( -^^    - pf ) (p - pf )for i / 0, (208) 
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plus higher order terms which make no contribution to the residue.    The case i = 0 is 
not included in (208) because then y = 0, and the series involves the ratio 0/0.    Treating 
this case properly results in 

r sinhya = 2a (-^F   -p±)(p -P±), (209) 

The i = 0 terms will differ by a factor of 2 from the others, so that it is convenient to 
define 

<  2 for i = 0 
A   = (210) 

1       f  1 for i / 0. 

The residues could also be obtained by using small-angle formulas. 
Examination of the square-root term in Eq.  206 shows that the real part is always 

greater than one, and that both the real and imaginary parts are positive.    The + poles, 
with positive real and imaginary parts, are the poles for negative x, since the natural 
response must decay away from the entrance.    Similarly, the - poles have negative real 
and imaginary parts and apply to positive x.    The vector potential due to the entrance, 
the sum of the residues of the transformed potential, is 

p. kx 
«       MfNIf-l)1 cos  HZ e 1 

Af (x,y) = -      ^     —^ ^   for x < 0 , (211) 
-       .kVpN)(!ME.pr) 
i=0 

and 

jLtfNI coshy (-j) ky e"Jkx 

^f(X'y) := ky  (-j) sinhy (-j) a 

p.  kx 
MfNI (-1)1 cos  i^ e 1 

V*      — Jf     forx>0> (212) 
^        akVp-+j)(^-p-) 
i=0 

where y(-j) is the previous definition for the excitation response, Eq.  38a.    The minus 
sign for the x < 0 solution arises because the contour encircles the poles in a clock- 
wise direction.    The exit fields, centered about x =nA, have to be added to the above. 

♦This can also be seen from the contour integral (Appendix F) which is closed to the 
right for x < 0, and to the left for x > 0, so that the contribution from the semicircle 
is negligible. 
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The inverse transform and the method of handling the doubly infinite series of 

poles are discussed in Appendix F because it is not evident that the usual procedure 

works in this case.    The poles extend to infinity in both directions along the real axis, 

as shown in Fig.  F-l, so that the requirement that the function approach zero far from 

the imaginary axis is not satisfied.    For large i the poles are proportional to i and the 
2 

residues to l/i   , and the series converges. 

Comparing the above results with the discussion in section 6. 1, it is seen that the 

poles and residues are symmetric about the ends of the machine provided the fluid is 

stationary.    For a moving fluid the poles are not symmetric; the + poles have a larger 

real part, faster decay, and smaller residues.      >- 

Further information is obtained by restricting attention to the regime of practical 

machine parameters;  I s I « 1 for high efficiency, a « 1 for a reasonable power density, 

and   |sRM | » 1 for the reactive power to be small compared to the real power.    The 

value of aRn/rTr will probably be around unity, making the coefficient of i in the last term 

under the radical sign in Eq.  206 large and causing an appreciable increase in the poles 

from i = 0 to i = 1.    The residues for i ^ 0 are small compared to the residues for 1=0, 

as in also seen from the Fourier series approach to the modes mentioned earlier, and 

the exponentials decay much faster.    The fields and powers, with small error, can be 

calculated using only the excitation and i = 0 components for this case.    The calcula- 

tions of section 6. 4 show that the powers due to the i / 0 terms are at least two orders 

of magnitude smaller thuci the powers due to the i = 0 components for reasonable para- 

meter values. 

Consider next the poles for i = 0.    For the region of interest ^/[R^irp (1 -s)] will be 

less than one, and Eq.  206 may be written approximately as 

(213) 

retaining only the leading terms of the binomial series.    The + pole has a decay length, 

l/tZirRe-^j }] in wavelengths,   of l/Zw RMF.     This is small,  a few hundredths of a 

wavelength.    The - pole has a decay length of RMF(1 " s) /2jr, which may be several 

wavelengths.   This clearly shows the asymmetry of the perturbation fields, and that 

the perturbation fields may extend an appreciable distance into the machine. 

The coil impedance for a finite-length machine will be a function of the coil loca- 

tion.    Using the methods developed in Section II, the potential in the exciting coils is 

found from the vector potential.   Evaluating Eq. 25 for the coil voltage and calculating 

the impedance gives 

± 
Po = 

RMF 
2 [-(-H^rR^. v)J 
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7        R 

R R y(-j)tanhy(-j)a 

+   S   j^^W^-pr) 
/   27rp.        \ p  (p. +j)kx        (p. - j)kx- 

(p;-j) Ji (Pi + j) 

(214) 

for a coil one wavelength long, where R and R are given by Eqs. 49 and 50. The ± 

sign is for the two phases; + for the cos kx coils, and - for the sin kx coils. The first 

term is the resistance of the coil, because of its finite conductivity, the second is the 

impedance with no ends, and the remaining terms are the contribution from the pertur- 

bation field. The coil impedance is a function of x, where x is the location of the be- 

ginning of the coil. For the cos kx coils, x is 0, A, 2A., etc. The exit field is not in- 

cluded in this calculation, but its effect is small because the perturbation field at the 

exit is mainly outside the machine. 

Several sets of curves of the series-equivalent resistance and inductance for the 

cos kx coils are included to show the magnitude of the impedance perturbation and the 

series of damped sinusoids.   The curves only have physical significance when used with 

an actual coil structure; the impedance of each coil is then determined from the curve 

using the value of x at which the coil starts.    The curves are oscilloscope pictures 

taken directly from the computer, and are normalized so that the asymptote of each 

curve is the resistance or inductance with no end effect.   The range of x covered in 

wavelengths is given for each curve, along with the machine parameters s, RM> and a. 

All curves are for perfectly-conducting exciting coils. 

The resistance and inductance for a reasonable operating point, R^ = 10 and a = 0. 1, 

are shown in Fig. 48a through 48d for several negative values of the slip.    For s = -0. 01 

the resistance   is positive for about the first three wavelengths, so that a short machine 

will not operate as a generator.   As the magnitude of s increases for negative values, a 

large-scale oscillation develops in addition to the small-scale oscillation.    This gross 
(D~ + i) kx oscillation arises from the eVPO   J'      term of Eq. 214, which is the larger of the two 

exponentials.    The real part of p   is small, and the imaginary part is close to -1, from 

Eq. 213, so that the denominator of the first exponential is smaller than the denominator 

of the second.    It represents an oscillation of wavelength -[(1 - s)/s] A, where X is the 

excitation wavelength.    This gives the correct wavelength of the gross oscillations for 

the s = -0, 2, -0. 5, and -1 curves.    (Note the different x scale for the s = -1 curve.) 

The decay length for the oscillation increases with increasing negative values of s, but 

the net end effect decreases, as is best seen from the powers. 
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Increasing RM results in a longer decay length, while for smaller RM the decay 

is more rapid but the oscillations are larger.    The case s = -1 and RM = 0. 1, Fig. 48e, 

has a much larger oscillation which becomes negligible in only a few wavelengths.    This 

is not a good operating point. 

For the cases shown the normalized curves are almost independent of a, the dif- 

ference between a = 0. 01 and a = 1 being negligible.   Also, the change from the cosine 

to sine coils has no effect on the gross behavior and only a slight effect on the oscilla- 

tions.    Finally, note that the oscillations are 90° out of phase for R    and L , as they 

should be for the real and imaginary parts of Eq. 214. 

The impedance gives a poor picture of the change in the machine performance with 

length because of the gross oscillation and the necessity of summing over several coils 

(points).    The powers give a better picture because the integral over the length averages 

the oscillation, and only one point on the curve is required. 

6.4   THE IDEAL CORE - POWERS 

The power calculations are considerably more complicated than for the infinite- 

length machine because of the infinite sums and the four distinct regions of space shown 

in Fig. 47.    Regions 1 and 2 are before and after the entrance, and regions 3 and 4 are 

before and after the exit.    For a long machine there is also a central core where the 

infinite-length machine conditions exist.    The complete field solution is already known 

in terms of the entrance solution of section 6. 3 and the spatial and phase delays because 

of the negative step at the exit.   The fields in regions 1 and 2 are the solutions obtained 

for x < 0 and x > 0, Eqs.  211 and 212.    The fields in regions 3 and 4 are the negative 

of those in regions 1 and 2 respectively from the negative step, multiplied by e ^ 

from the phase shift, and centered about x = nA. 

The power calculations are simplified by breaking the powers up by regions and 

sources, and by using the field properties.   Only P   and P    are considered, as P   can 

then be determined.    For convenience, the powers are split into four parts depending on 

which fields are the sources:   the excitation powers, the perturbation powers resulting 

from cross-products between the excitation and perturbation fields, the perturbation 

powers that are due to fields at the entrance or exit alone, and the perturbation powers 

attributable to coupling between the entrance and exit fields.   The excitation powers 

are already known from the results of Section III. 

Consider first the power supplied by the exciting system to the fluid, P , which is 

the integral of the y-component of Poynting's vector at the channel wall.    Since the 

longitudinal perturbation magnetic field B   is zero at the wall, the perturbation power 

reduces to the integral of a sum of terms of the type B   because of the excitation times 

E   for the i-th pole.    There are no cross terms between different values of i, and no 

coupling between the entrance and exit fields.    The integral extends only from x = 0 to 

x = nA because the excitation field is zero elsewhere. 
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Fig. 48.   Continued on next page. 
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Fig. 48. Finite-length, ideal-core, series-equivalent resistance and inductance 
for cosine coils versus n: (a) for s = -0. 01, RM = 10. a = 0. i; <b) for 
s = -0. 2, RM = 10, a = 0. 1; (c) for s = -0. 5, RM = 1°, a = 0. 1; (d) for 

s = -1.0, RM= 10, a = 0. 1; (e) for s = -1.0,  RM= 0. 1,  o = 0.1. 

97 



The mechanical power output, P   , is more complicated.    The fields at the entrance 

and exit are the same, except for the excitation field.    Thus P   „, the perturbation 

power in region 3, is the sum of P    ^, which is due wholly to the perturbation field, plus 

the coupling power between the excitation and perturbation fields.   Similarly, P^Q is 

P   4 plus the coupling term.    The values of P    . and P   4 are independent of the length 

of the machine as the fields which yield them extend throughout all space within the 

channel boundaries.    The powers are modified, however, by the addition of a second 

type of coupling, between entrance and exit perturbation fields, if the machine is not 

long.    These powers, denoted by P   „., Pm23 and P    .„ for the fields involved, are 

listed in order of importance since the perturbation fields are larger after the steps 

than before the steps.    As nA becomes large, these quickly approach zero. 

The mechanical power is the integral of field products over the volume of the 

channel.    Because the integral over a length a of the product of two terms proportional 

to cos (iny/a) is zero unless i is the same for both terms, there are no cross products 

except between the cosh y ky variation of the excitation field and the perturbation field 

terms.    For the region of practical interest (ya « 1 so that cosh yky ~ 1), there is 

coupling only between the excitation and i = 0 fields, denoted by the subscript eO.    The 

eO terms are the dominant contribution to the mechanical powe^with the input-output 

coupling terms smallest except for a machine less than a wavelength long. 

Turning next to the calculation of the powers, the formulas  used, from section 2. 4, 

are 

nA 

P s i /   Re{^^ dx, (215) 

and 

/ 
Pm=-     | vRe-)        9 ^dxdydz, (216) 

vol 

where the field quantities are expressed as the sum of the excitation plus the perturba- 

tion fields.   The resulting equations are presented in Table 11 for the four regions, 

making use of the properties mentioned previously.    A slit channel is assumed so that 

coupling terms to the excitation field in P     are zero unless i = 0.   This assumption is 

not used elsewhere, not even in calculating the eO term.    The normalization constant 

P   and the powers are in terms of a machine of length nA.    This normalization is 

chosen so that the asymptotic powers are horizontal lines, making deviations easy to 

recognize. 



Table 11.    Powers attributable to finite machine length. 

Region 1 

'ml  _       aRMF 
P      ' "     Ann 

Re E  ,_+: _+*.—    ci ci 
i=0 

(Pi + Pi   ) 

si = 0 

Region 2' 

P       = P + P 
m2        m2e0        m4 

P r »   jSp~* C"* 
Pm2e0       RMF R     H     0      0 

Re P 27m   "" j    2 ,  -*      ., 
o / Y    (P0* " J)   L 

1 - e 
(p^* - j) 2vn 

j(j^(l-s)p;) 

 *2 =     n 
Y *(pn  

+i) — 

(p" +j)27rn"| 

s2 
P 27rn 

'      i=0 

J(1-e(P.: + J,2'n) 

Region 3' 

p       = p + p 
m3     rm3e0        ml 

'n^eO _   RMF 
27rn Re« 

o 

jsp+* C+* J  ^o   _o 

y2(Po*-j) 
1 - e 

"(P * - j) 2jm 

j(jMi -s)p;) 

*2 ,  +  .   .. ^o 1 - e 
-(po+j) 27rn 

y     (P0 
+ j)        — 

tLess excitation powers. 
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Table 11.    Powers attributable to finite machine length (Cont.). 

s3 1 
P      " 2jm Re 

(           -(p^+j) 27rn\ 
^        j\l - e      1 )__ 

^      A      . +J  ..2 /
RMF       +\ 

i=0     Aia(Pi^J)    (^—Pi) 

Region 4 

Pm4       aRMF (    ^       A    (j + (l-s)p:)     _      .    . 

o i     ^^ (P. +P..*)   
I    i=0 1       1 

P     = 0 s4 

Coupling 

'ml3   =   
QRMF 

P 47rn Re 

'      i=0 

^(^('-)pnp>c.c> 
(p-'+p^*) 

/    -(p^*  - j) 2irn       -(p^+j) 27rn\ 

Pm23       'aRMF 
P 4n-n Re 

i=0 

-(JMI-S)PI:) 

(Pi + Pi*) 
p;* C. C.*e j27rn 

( - e    * ) 

Ai(J + (1-S)P
1

+)    p> c+C> e-J2-   (ePl>   ^     ~-Pi2nn] 

(Pi +Pi*) 
i       ii - e 
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Table 11.    Powers attributable to finite machine length (Cont. )• 

Pm24        -aRMF                  ^      Ai(j + (1 -s)?.)     _      .    . 
-^   =       .„      Re    ,'     Y    -J-^     P*C. C* 

o )   ^        (P: + P,"*) 
V     i=0 1        1 

/   (P> - j) 2zn+   (p: +j) 2wn\ 

Totals 

p=p +p +P + 9P + 9P +  P + P 4- P 
m       me        m2e0     ' m3e0     ^   ml     ^^4        ml3        m23        m24 

s       se        s2        s3 

Normalization 

P    =iLifv   N2I2c2Tn/k o     ^f   s ' 

C* = T    ("I)1 

i       ; TTT: 
AiQ(pi +JM-i- "Pi j 

NOTE:   n is length in wavelengths 

The variation of P /P   . P„/P .and e   = (P /P„) with the length in wavelengths s'    o       m'    o' g s'    m' a B 

n is shown in Fig. 49a through 49f for several sets of machine parameters.    The dashed 

line at the top marks the values with no end effect for reference.   There is clearly a 

minimum length below which the machine will not operate as a generator.    The rise in 

e   is much faster than in P , showing the small change in efficiency.   The end effect g s - 
decreases for larger negative slips, despite the longer decay length, because the de- 

nominator is larger, making the net contribution smaller.    The end effect is larger at 

smaller RM for this reason, and penetrates further into the machine, as shown by the 

figures. 

The total powers for a machine 6 wavelengths long are given in Table 12, normalized 

to be one if the end powers are zero.    This again shows the large end effect for small s, 

so that there is a maximum obtainable electrical efficiency, probably around 90% for 

Rjyj =10 and a 6 wavelength machine.    For s = -0. 2 and RM =10, the powers are 
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Fig. 49. Fine-length, ideal-core, Ps and e versus n: (a) for s= -0. 05, RM= ID, o= 0.1; 

(b) for s = -0.2, RM= 10, a = 0.1; (c) for s = -0.5. RM= 10, o=0.1: (d) for s = -0.2, 

R-.sl, a=0.1; (e) for s=-l, RM = 0.1, a=0.1; (f) P_ vs nfjr s = -0. 2, o = 0.1; 
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decreased by IC^but the change in the electrical efficiency is small.    This becomes 

worse as RM is decreased, both the power and efficiency are smaller, showing that 

Rjy. must be large to reduce the end effects. 

In the calculation of the powers, the primary contribution is from the i = 0 terms, 

and the higher-order terms are small for practical machine parameters, as is illus- 

trated in Table 13 for the mechanical powers.    The numbers are the terms of Table 11 

less the exponentials of P   „  „ and P   0  n, and without n in the normalization.    The m^eu moeU 
coupling powers are not included.    The only terms of significant magnitude are the eO 

and i = 0 terms, except for large slip.    The first two columns show that Pm2 and Pm4 

dominate over P   o and P   , because of the asymmetry of the fields.    Comparing the 

total perturbation power for a long machine, all exponentials set euqal to zero, with the 

excitation power per wavelength shows roughly how much of the length goes to counter- 

act the end effect.    For small slip this is appreciable, as expected from the results of 

Table 12 and Fig.  49.    A similar table could be made for P , but it would not show any- s 
thing additional. 

Table 12.    Total powers and efficiencies for a generator 6 wavelengths long. 

s RM a P* 
s 

* 
Pm e 

g 
et 

OO 

- 0.05 10 0. 1 0.483 0.537 85. 6% 95. 2% 

- 0. 1 10 0. 1 0.697 0.723 87.6 90.9 

- 0.2 10 0. 1 0.897 0.909 82.3 83.3 

- 0.3 10 0.1 0.927 0.939 75.9 76.9 

- 0.5 10 0. 1 0. 984 0. 986 66.5 66.7 

- 1 10 0. 1 0.997 0.997 50.0 50.0 

- 5 10 0.1 1. 000 1.002 16.6 16.7 

- 0. 01 100 0.1 0.033 0.049 66.3 99.0 

- 0. 1 100 0. 1 0.971 0.971 90.9 90.9 

- 0.2 5 0. 1 0.842 0.866 81.0 83.3 

- 0.2 1 0. 1 0.716 0.841 71.0 83.3 

*P , P     are normalized to 1 if there is no end effect, s      m 

te    =   -j—— is the efficiency with no end effect. 

The results of this section put further limits on the machine parameters.    The slip 

cannot be very small or the efficiency and end effect become objectionable.    If RM is 

not large, say greater than unity, the end effect is again large, 

has to be several wavelengths long. 

M 
Finally, the machine 
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6. 5   LOSSLESS-CORE  MACHINE 

A machine with a lossless core of arbitrary permeability is treated by an exten- 

sion of the previous theory.    This model applies to an air-core machine, which has been 

proposed for space-vehicle applications, despite the lower power density and poor power 

factor, on the grounds that weight and temperature limitations make the use of iron un- 

acceptable.   '       The arbitrary-core problem is more complicated since: 

1. An analytical solution for the poles is not available, although equations 

can be found for the fields, impedance, and powers in terms of the unknown poles. 

2. The fields are no longer orthogonal for the power calculations. 

3. The fields are not zero in the core. 

The solution is described, but not carried through in the same detail as for the ideal- 

core machine. 

The poles for a lossless core, 6=1, are determined from Eq.  204.   Writing y 

as the sum of real and imaginary parts shows that y must be pure imaginary, y = jb, 

and that 

b tan ba - * = 0 . (217) 

The roots of Eq. 217, denoted by b., cannot be determined analytically, although numeri- 
1 65 

cal methods, such as the Newton-Raphson method of iteration,     are available.    For 

Ka « 1 or ba » 1 the roots become the same as for the ideal core, as shown by the 

graph of Eq. 217, Fig.  50, and the table of roots. Table 14.    The arbitrary-core roots 

are the intersections of the two curves, the ideal core roots are the points where the 

tangent curve crosses the axis.    The difference is small except for i = 0. 

♦ ba 

Fig.  50.    Graph of Eq. 217. 
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Table 14.    Roots of Eq. 217 or Fig.  50. 

b.a. Arbitrary Core b.a. Ideal Core 

i Ka = 0. 01 IfQ  = 0, 1 Ifa = 1 ivr 

0 0. 09983 0.3111 0. 8603 0 

1 3.145 3.173 3.426 3.142 

2 6.285 6.299 6.437 6.283 

3 9.426 9.435 9.529 9.425 

4 12.57 12.57 12.65 12.57 

5 15.71 15.71 15.77 15.71 

The poles, in terms of these roots, are 

R MF 1*^1 + R 
Jl 

MF (1 -s) (218) 

which is Eq.  206 if b. = (i;r/a).    The poles for an arbitrary core lie on the same curve 

in the p-plane as the ideal core poles but at different points. 

There is one important distinction for the non-ideal core.    The lowest root, b , 

is no longer zero, but lies between zero and 7r/2Q, as seen from Fig.  50.    The real part 

of the square root of Eq. 218 for i = 0 will be larger, and the decay length fer p' sig- 

nificantly less, than for am ideal core.    For the practical parameter values s = -0. 1, 

RM = 10, and a = 0. 1, the decay length is 2. 1 wavelengths for an ideal core, but only 

0. 18 wavelengths for an air core.    The other roots, and thus the poles, are essentially 

unchanged, as shown.    The zero-order field will not be much larger than the others and 

will not dominate the powers.    The perturbation field decays faster, and may for this 

reason have a smaller net effect on the performance. 

The residues are again found by expanding the denominator in a series about the 

pole, resulting in 

y sinh ya +   «cosh ya = cos (b 
[K+aU2^2)]    ,RMF        ±. 

1      h2  (-2--pi,Mp-pi) 

(219) 

plus higher order terms, which reduces to Eq.  208 for /f = 0.    Here, no distinction is 

required for i = 0.    The vector potential is 
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Af(x.y) 

and 

y 1 
ßjNlh.  cos b. ky e 

+ . p. kx 

i=0     k(cosb.a)   [K+a{K
2
+h

2
i)]    (»MF -pj-)(p+ + j) 

-for x< 0 

(220) 

."jkx ßfNI cosh yC-j) ky e 

^f(x'y) =   k (y(-j) sinh y (-j) a + ^ cosh y (-j) a) 

+ E 
/iJMIb. cos b.ky e 1 

p'kx 

7 R 
i=0     k(cosb.Q)    [lf+a(#f2+b2)]   (-MF - p" ) (p-+ j) 

(221) 

Because of the nonideal core both the excitation and perturbation fields are reduced. 

The relative end effect may be decreased due to the faster decay of the perturbation 

field, but a numerical check of this remains to be evaluated. 

The impedance for a coil one wavelength long, calculated as before, is 

for x> 0. 

_Z_      _R^  
Ro   =   Ro   +   y(-Jl)tanhy(-j)o+if 

J 

2   f 27rPi        \ 
Jb,   (e      ^ij 

i=0 

(pr + j) kx     (pr - j) kx 

L   (pr + j) (p; - j)    J 

23r|> + a(*
2
+bi

2
)]    (^MF-p-){p:+j) 

(222) 

where the terms are as described with Eq.  214 for the ideal core. 

The calculation of the arbitrary core powers is much more complicated.    There is 

no longer an orthogonality condition for P   , the integral of the product of the fields for 

two different values of i is not zero; and there is complete cross-coupling, including to 

the excitation field and between entrance and exit fields.    This is also true for P   since s 
neither the perturbation electric field nor the longitudinal perturbation magnetic field 

are zero at the coils.    The i = 0 fields may not dominate the calculations as in the ideal- 

core machine, necessitating the retention of more terms.    Finally, the power carried by 

the fields in the core has to be considered.    There will be electrical power transferred 

through the core to the coils from outside the machine, regions 1 and 4, because there 
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is a similar x-directed power flow in the core as in the fluid, although it should be 

small.    The lossless core machine of arbitrary permeability is not carried further 

here, because of these computational difficulties. 

6.6   EXTENSIONS 

Before leaving the machine of finite length, it is worthwhile to consider some of 

the possible extensions of the theory to cover other models.    The case of a core with 

loss presents additional difficulties because the roots of Eq. 204 are not purely ima- 

ginary.   One method of finding the roots would be to use an expansion about the poles 

for K = 0, valid for ^6 « 1.    This is of limited value, and appears to be harder than a 

direct iterative solution.    The rest of the procedure for finding the fields and powers 

would be the same, and could be carried through once the roots are known.   An iron 

core is always laminated in practice, and this is equivalent to making the core lossless, 

6 « 1, so that the lossless-core solution covers almost all cases of interest. 

For a core of arbitrary length the transform approach cannot be applied.    The pro- 

cedure of finding the normal modes and then matching the boundary conditions requires 

a continuum of modes because of the infinite lengths.    One possibility, valid for the 

field solution with no fluid present, is to use a spatial transformation to map the finite- 

length core into the previous problem.    This area merits investigation, but does not 

appear fruitful for design purposes.   The finite-length core probably has little effect 

at the entrance because the fields outside the machine, region 1, are small.   It will be 

important at the exit, but the exit powers are small. 

Turning next to the exciting current, the actual coil structure will not start and stop 

abruptly; there will be gaps due to the missing coils which would extend outside the 

machine.   These gaps will result in a still lower power density at the ends, less excit- 

ing field there, and an increase in the net end effect.   This can be included analytically 

by using the transform of the actual current distribution.    It will change the residues, 

but not the natural poles, and add additional poles.    The basic procedure remains the 

same. 

Finally, there is the possibility of diminishing the end disturbance by grading the 

exciting winding.    If K has a zero corresponding to the p   pole, this pole will not appear 

in the fields, and the perturbation will be appreciably reduced.    In practice it may not 

be possible to completely cancel this pole, although a substantial reduction may be ob- 

tained.    This result is particularly important for the case of a short machine.   Quali- 

tatively, the exciting winding would haVe to extend out past the previously sharp machine 

ends, so that the improvement is paid for with increased viscous and excitation losses. 

Further analysis is required to see if this results in an overall improvement. 

109 

■ ■   ■..■■-■ 



VII.    DISCUSSION OF GENERATOR PERFORMANCE 

Consideration will now be given to the MHD induction machine in terms of attain- 

able over-all efficiencies.   Weight and cost considerations are not included.   Attention 

is accordingly directed toward the generator case, as efficiency is a primary determining 

factor in selecting a generating system.    The selection of a pumping system is not neces- 

sarily based on efficiency considerations, as the absence of rotating components and 

seals are important advantages.   Also, power levels are substantially lower than those 

proposed for MHD power generation systems, particularily in central-station installation. 

A clear statement of the model used is included in section 7. 1 so that the usefulness 

of the results obtained may be assessed.    A study of the basic interaction process in 

section 7. 2 shows the parameter range required for reasonable operation, and this is 

used in section 7. 3 to examine liquid metals and slightly ionized plasmas as working 

fluids in the induction generator.    Performance calculations for a high and a medium- 

power generator operated on a liquid-metal flow  are carried out in sections 7. 4 and 7, 5 

based on realistic fluid and electrical conditions.    They are selected to show the per- 

formance to be expected and the limitations placed on the parameter values. 

7. 1   THE MODEL 

The previous theory started with the basic field-fluid interaction which gives the 

upper limit of attainable machine performance.    To it were added the following. 

1. Loss in the exciting system - coil, core, capacitors 

2. Velocity profiles 

3. Viscous loss 

4. Finite machine length 

5. Channel walls and insulation. 

Not included were the following. 

1. Details of the excitation system 

2. Finite machine width 

3. Gas-dynamic considerations, including compressibility and Hall effect 

4. The fluid power source. 

The exciting system losses are approximate, as exact values cannot be obtained 

until the detailed construction of the winding and core is specified.    Slots, cooling, etc., 

are accordingly not considered in detail, but reasonable figures for coil, core, and 

capacitor losses (required for power-factor correction) are calculated. 

Superconducting windings are not considered because of AC power dissipation.    Cryo- 
genic coils may be better.    The coil loss is already small, and the construction problems 
associated with the cooling system will result in a greatly increased air gap, so that 
neither system appears attractive. 
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The channel walls and insulation, treated in Appendix G, may be highly detrimental 
to generator operation.    Since a proper design must avoid this, they are accordingly 
not considered here. 

The chief assumption is to neglect the finite machine width because the fluid current 
paths must be closed at the edges of the machine.    The finite width will have little effect 
on machine performance if the additional resistance introduced into the current path is 
small compared to the resistance across the machine.    This is satisfied by making the 
machine wide, c >> X, and/or by adding highly conducting copper bars along the edges 
of the channel.   Otherwise the fluid current and the power density will be decreased by 
the increased path resistance, resulting in a lower efficiency.   An annular geometry 
avoids this difficulty, but adds others in the construction and cooling of the inner core. 

The induction generator, in principle,may be used in both open- and closed-cycle 
R 7 

power systems.    In the former, combustion gases serve as the working fluid,       in the 
Co R Q    70 

latter, either a plasma      or a liquid metal    '       may be used.   It is shown in section 
7. 3 that the plasma conductivity attainable within the limits imposed by heat-source 
temperatures is too low for reasonable power factors and power densities.    Further 

discussion, accordingly,is limited to liquid-metal generators, and plasma problems 
such as compressibility and Hall effect are not treated. 

7. 2   OPTIMUM OPERATING REGIME 

The conditions required to attain an efficiency of over 70% for the generator and 
associated equipment are reviewed.   The limiting electrical efficiency, -i , must be 

1 much higher to allow for other losses.    This constrains s to lie in the range - T< S< 0, 
but it should not be too close to zero to avoid excessive profile and end losses. 

The circulating power should be small compared with the real power for small 
excitation and capacitive losses, and this requires R^ to be on the order of 10.   Low 
sR,J values lead to less output power for the same excitation losses, and accordingly 

to lower efficiency.    A further consideration is thatIsR-J should be of the order of or 
greater than unity to attain a power density of the same value as the corresponding DC 
machine.   This criterion cannot always be satisfied, as R^ is limited by attainable 

fluid properties, but the total efficiency decreases, and the entry length increases for a 
finite-length machine, as RM becomes smaller. 

The value of a should be small (0. 1 or less) to keep the power density high.    It is 
limited by the minimum value of the channel half-width set by construction problems. 

For an air-core machine, R„ is replaced by RM    as shown in IEq.  53, and the 
power density is decreased for the same exciting current because df the increased re- 
luctance of the magnetic circuit.    For a = 0. 1, RM     << R«*, and the power level, 
Eq.  71, is less than a tenth of its iron-core value.    As the iron-coi^e generator must be 
carefully designed to yield an only marginally acceptable efficiency, the air-core   machine 
is inherently not capable of meeting the required performance, anljl will accordingly not 
be considered here.   It may be of interest only when weight or temperature limitations 

rule out iron. 
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The velocity profile for a slit-channel machine may significantly decrease the 

efficiency for small s, as is shown in Fig. 30 for a Hartmann profile.    For laminar flow 

and s around -0. 1, M must be much greater than 50 to prevent a 5 or 10% decrease in 

the efficiency.   This condition is automatically satisfied for a high power density.   For 
6 * turbulent flow the boundary-layer analysis shows that —■      is increased, so that a 

slight loss in the efficiency is encountered even for M in the range 500-1000.    The non- 

slit-channel machine is not considered here because of its low power level and severe 

profile effects. 
Finally, the dimensions of the machine are restricted by end and edge considerations. 

The machine must be several wavelengths long so that the finite length does not decrease 

the power level.   A decrease in the power level represents a decrease in the over-all 

efficiency because less output power is obtained for the same viscous and excitation 

losses.   The machine width should be larger than A to keep edge losses small.   The 

wavelength cannot be too small, or a < 0.1 cannot be satisfied. 

7. 3  COMPARISON OF LIQUID METALS AND PLASMAS 

The primary consideration for a fluid in the MHD induction generator is the attain- 

able magnetic Reynolds number.    Based on Ry,, a quick evaluation of a given fluid is 

possible before adding in the other loss mechanisms.   Since v and v   are approximately s 
the same for small s, 

is used in place of RM. 

Practical values for a liquid metal and a plasma are listed in Table 15.   The ov 

product for a liquid metal is large due to the high conductivity, and reasonable values of 

R-,-, are obtained.    The velocity is limited by viscous losses and X by the total machine 

length.   For a plasma the av product is too low by more than two orders of magnitude. 

Unless higher conductivities are obtainable, a plasma is not suitable as a working fluid 

in the MHD induction machine.   It may be noted that, even for a liquid metal, there is 

no leeway for the decrease in going from R-, to tL.    for an air-core machine. 

Table 15.   Liquid metal and plasma properties. 

Liquid Metal Plasma 

2 

3 
a, mhos/m 106 102 

v, m/sec 10-100 10 

X. m 1 1 
RMF-Jiir^ 2-20 0-02 
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7.4   HIGH-POWER GENERATOR 

A design for a generator producing an output power in the 100-megawatt range is 

discussed.    This is not intended to be an optimum design, and is not chosen to meet any 

specifications, but it does give an idea of attainable efficiencies and the limits on machine 

parameters.    The results are summarized in Table 16, where all numbers were rounded 

to three figures after the calculations. 

Eutectic sodium-potassium (NaK), 78% potassium by weight, is chosen for the fluid. 

The fluid used for an actual machine will depend on thermodynamic considerations, which 

are not considered here.   The fluid temperature will be high because of the heat source 
71 and losses.    The properties     of NaK at 700°C are 

a =   1.1x10   mhos/m, 

7j =   1.5x10'    kg/m-sec, 

p =   7. IxlO2 kg/m3   . 

The dimensionless parameters are chosen to be s = -0. 1 for a high limiting effi- 

ciency, RM = 10 so that |sRM   = 1, and a = 0. 1 for a high power density.    For an iron- 

core machine K will be small, and is taken to be zero except when finding the core loss. 

The magnetic Reynolds number cannot be increased without increasing the relative 

viscous loss, as explained later.    Making |s| smaller runs into three difficulties:   the 

power density drops because RM is fixed, the profile losses become larger, and the 

penetration length of the field increases.    The ratio a cannot be decreased because the 

gap between the exciting plates is already less than 1% of the length or width of the 

plates, and this makes construction difficult.    This choice of machine parameters, 

dictated by the nature of the interaction, automatically leads to a high-power machine. 

It is necessary to move away from this optimum to lower the power level, and the re- 

sult is a lower efficiency.    Thus, the induction generator is inherently a high-power 

machine, if constrained to have a high power factor. 

Since the choice of machine parameters is inter-related, only the frequency or 

wavelength, c, and NI remain.    For example, 

vs = # X   . (224) 

and, for NaK, 

RM =   0. 22 ^  A2- (225) 

For a central power station, -x- will be 60 cps, giving 0. 871 m and 52. 3 m/sec, 

respectively, for X and v .    Increasing -s- while holding either RM or \ constant 
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increases v   , and makes the performance worse because the viscous loss increases s r 

faster than the output power.    Increasing RM without increasing v   is desirable but 
leads to lower frequencies.    Increasing «— and holding v   constant, necessary for a 
400 cps space power system, has the disadvantage of reducing R^ .    These considera- 
tions may rule out higher frequencies at high power factors.    For the remaining dimen- 
sions, the machine is made 10 wavelengths long and 2 m wide to minimize end and edge 
effects.    Note that a, 1. JO cm, is very small compared with both nA and c. 

The final parametei, NI, should be large for a high power level, but not so large 
that the iron saturates.   Choosing NI = 10   amp-turns/m, and operating the winding at 

4 2 2 a current density of 10   amps/in    (1550 amps/cm ), determines the exciting-winding 
thickness b to be 0. 645 cm.    This is not small compared to a, but putting the winding in 
slots avoids the decrease in power level due to the finite-thickness winding which 

2 occurred in Appendix C.    The magnitude of the flux density, 0. 889 wb/m   , is low 
enough so that the iron teeth between the slots where the coils are located should not 
saturate. 

At this point the limiting efficiency, including profile and end effects, is calculated 
7 

before the other losses are added.    First, R   =1.49X10   ,so that the flow will probably 
be turbulent.    For this R   and M = 747, — = 7 X 10     from the turbulent boundary-layer e a      *:!;      « 
theory of section 5. 5.   Comparing this with —   = jr? for a Hartmann profile gives an 
effective M of 143 for the turbulent profile.   This agrees with the work of Harris for 
turbulent MHD flows (section 5. 2), which required a higher M for the same flatness as 
the Hartmann profile.   Using the effective M to calculate the profile factor gives 
F     = 1.038. m 

Finite length is included by means of the ratios of P   and P     for finite-to-infinite 
length machines.   The values of 0. 827 and 0,842, respectively, are obtained for these 
parameters.    The efficiency is decreased, since the ratio is less for P   than P   , 
and the over-all efficiency is further decreased because the power output is less for 
the same viscous and coil losses.    The end and profile factors are independent for a 

slit channel.    Using Eq.  71 for P   together with the profile and finite-length factors 
gives an output electrical power of 47. 3 megawatts, an input mechanical power of 55 
megawatts, and an efficiency of 86% without inclusion of the other losses. 

The coil, capacitor, core, and viscous losses must still be taken into account.    The 
coil loss is calculated from the conductor volume and the conductivity, Eq. 33.    For 
the assumed NI and current density, and using copper at 200"C, P    = 0. 80 megawatt. 
A temperature of 2008C is selected because the coils and core must be considerably 
cooler than the fluid so that the magnetic properties of the core are retained. 

Capacitors are required for power-factor correction with the induction generator. 
This might be supplied by conventional synchronous generators in a large system, but 
allowance is made here on the basis of the loss attributable to the static capacitors 
for a self-contained system.    The power loss is determined by the Q of the capacitors 
plus the associated lead loss.    For conventional power-system capacitors, the best 

I 
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72 obtainable, at present, is a Q of around 300 at 60 cps.   "   A total Q of 50 is assumed to 

include losses in the leads plus the additional capacitance required to balance the 

normally inductive generator load.   The capacitor power loss is 0. 95 megawatt, since 

the real and reactive powers are equal for jsR,-   = 1.   An increased Q will cause at 

most a 2% increase in efficiency. 

The core loss depends on the core construction. A solid core is not acceptable, 

and a laminated core must be used as in conventional machinery to reduce the circu- 

lating currents and loss. This is equivalent to decreasing o and 5 while retaining K 

small.   The core loss is found as a function of the field strength and the lamination 

thickness from experimental measurements of the power loss per pound, including both 
2 

I R and hysteresis losses.    For calculation purposes, the magnetic flux density in the 

core is assumed to be constant for a skin depth and zero elsewhere, in the manner used 
73 to calculate the power loss in conductors with skin depth.        Since Ö is now on the order 

of 1, the skin depth,   „  ffiiA' *s  ®m ^^ m'    ^or a high-grade transformer steel at 
B = 0. 889 wb/m   , the power loss is 0.41 watts per pound for 0. 014 inch thick lamina- 

* 3 tions.     The density is 7. 55 gr/cm   , so that a volume of steel 2(0. 139x 10A.xc) cubic 

meters weights 80, 600 lbs.    The approximate core loss, 0.033 megawatts, is negligible 

compared to the other powers.    Evidently, the effective a   is essentially zero. 

Finally, the viscous loss in terms of the friction factor is 

Z 

lh 

Pv -   f^PVü(2acv) (226) 

from Eq. D. 19 for the viscous pressure drop.    This may be high by a factor 2, as 

mentioned in Appendix D.    For R    = 1. 49 X 107 and M = 747, f = 7. 6 X 10"3 for OHD 
-3 e 

turbulent flow, or 8. 5 X 10      from the MUD turbulent boundary-layer analysis.    The 

results are close, so that, since P   is in question by a factor 1/2, it makes little dif- 

ference which is used.    Taking the OHD value of f, and neglecting the factor 1/2, 

P    =4.47 megawatts.    This is 10% of the output power, and is the largest of the losses. 
v ^ ' 

Note that P   is proportional to v , while P    is proportional to v with constant RM, so 

that increasing v will make the net performance worse. 

Based on these approximate results for the losses, the total power output is 45. 6 

megawatts, and the efficiency is 77%.    This may be slightly low compared with other 

generating methods, but may be advantageous in allowing a higher heat-source tempera- 

ture than conventional turbine systems. 

The three other high-power designs of Table 16 show the increased efficiency 

resulting from increasing the length and NI.    Only the changed figures are entered in 

the table.    Doubling the length, design 2, increases the ratios of P   and P     for finite- 

74 Armco tran-Cor A-6, 
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to-infinite length machines to 0. 913 and 0. 920.    This gives a slightly higher power 

level relative to the losses and better efficiency. 

In designs 3 and 4, NI is increased by   2, which doubles the power level.    This 

decreases the profile factor F_ to 1. 022, since —  = 4. 02 X 10"   , and the effective r ma 
M is 24 9.    The efficiency is higher because the power output is increased for the same 

viscous loss (neglecting any change in f), and because F     is smaller.   Note that P 

varies linearly with NI, while P   and P     vary as the square, because of the assumed 

constant current density.   Ideally, NI should be further increased, but this is not prac- 

tical because of saturation.   Already B = 1. 26 wb/m , which may be too large for the 

teeth.    Evidently, the generator should be operated at maximum magnetic field for 

highest efficiency. 

To complete the calculations, the total pressure difference across the machine and 

the coil resistance are found for the first design.    The pressure difference, P. /(2acv), 

is 26 99 psi or 184 atmospheres, including the viscous pressure drop.    This is large 

but not excessive for the powers considered.    It could be decreased by departing from 

the uniform-channel generator.    If the width increases along the machine, the velocity 

drops and some of the dynamic head of the flow may be utilized. 

To estimate the negative coil resistance due to the power transfer, neglecting the 

finite coil conductivity, requires a better picture of the winding.    As a minimum value 

(i. e., minimum N), consider the coil to be made of square turns of dimensions bxb, 

where b = 0. 645 cm.    Then the turns density, "tr , is 155 turns/m, and I - 645 amps. 

The series resistance per phase per wavelength, from Eq.  51, is R  =-13.7 ohms,  and s 
the coil terminal voltage is 8. 8 kilovolts.    This does not include the effects of finite 

length or the velocity profile, which decrease R   and V and cause them to vary along 

the machine.    If these effects are included, the average values along the machine, cal- 

culated from P , are -11.4 ohms and  7. 4 kilovolts.    V and R   can be cut in half by s s ^ 
connecting the top and bottom exciting coils in parallel instead of in series.   The 

current can be decreased by increasing N, but it may be best to keep the voltage in the 

machine low and then use an external transformer.    The machine is itself a variable- 

ratio transformer since N can be adjusted in the design. 

7. 5   MEDIUM-POWER GENERATOR 

A slightly different procedure is used for a generator with an output power around 

one megawatt because operation at the optimum point is no longer possible.    Instead, 

certain dimensions, set by the reduced volume, and the magnetic field are specified. 

It was shown in the previous section that operation at the highest possible magnetic 

field, limited only by core saturation, is best because the power output increases faster 

than the losses.    The magnitude of the field is specified as 1 wb/m  , probably large 

enough for saturation in the teeth. 

The generator volume is reduced to produce a more compact machine and to reduce 

the viscous and excitation losses along with the output power.    The minimum wave- 

length is limited to around 1/3 m by construction difficulties at these power levels 
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Table 16.   High-power generator designs. 

Parameters Units 1 2 3 4 

s -0.1 

RM 
10 

a 0.1 

K 0 

w/27r cps 60 

V s mf sec 52.3 

V m/sec 57.5 

a m 0.0139 

c m 2 

A m 0.871 

k 1/m 7.21 

i m 8.71 17.4 8.71 17.4 

R 1.49xl07 

e 
NI arnp-turns/m ,0* V2xl05 

b rn 0.00645 0.00912 

B wb/m 0.889 1.26 

M 747 1060 

P s megawatts 47.3 105. 94.6 209. 

P m megawatts 55.0 120. 108. 237. 

e    - Limit 
E    „_.  

% 86.0 86. 9 87.3 88.2 

P e megawatts 0.80 1.60 1. 13 2.26 

P cap megawatts 0.95 2.09 1.89 4.18 

P core megawatts - - - - 

P v megawatts 

megawatts 

4.47 8.94 4.47 8.94 

out 
45.6 101. 91.6 203. 

Pin 
megawatts 59.5 129. 113. 246. 

e    - Total % 76.6 78.0 81.2 82.4 

Ap psi 2699 5860 5120 11200 

and to keep RM reasonably large.    Here, \ and c are chosen as ^ m each, and the 

machine length as 4 wavelengths.    This leads to increased end and edge effects, but 

appears to be unavoidable.   The values a = 0. 1 and fi  r 60 CPS are again used, and 

NaK is retained as the fluid.   Higher frequencies may give poorer results, as mentioned. 

For this design v    = 30 m/sec, RM = 3. 3, and M = 482. 

The only unspecified parameter is s.    Three designs showing the effect of varying 

s at constant magnetic field are given in Table 17.    The exciting current is increased 

with increasing I si to hold B constant, because of the larger reaction field, as men- 

tioned in sections 3. 2 and 3. 3,    For this case, P   is found from Eq.  73 for a constant 
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Table 17.    Medium-power generator designs. 

Parameter Units 1 2 3 

s -0.1 -0.2 -0.3 

RM 3.3 

a 0.1 

K 0 

Ct)/277- cps 60 

V m/sec 30 

V m/sec 33 36 39 

a m 0.00796 

c m 0.5 

X m 0.5 

k 1/m 12.6 

9. m 2 

R 4.82xl06 5.25xl06 5.69x 10 

NI amp-turns/m 0. 838x 105 0. 953xl05 1.12x 10 

b m 0.00541 0,00615 0.00723 

B wb/m 1 

M 482 

P s megawatts 0.429 1. 17 1.97 

P m megawatts 0. 592 1.53 2.71 

e     -  T/imit 
P 

% 72. h 76. 1 72.7 

P e megawatts 0.038 0.044 0.051 

P 
cap megawatts 0.0086 0.023 0. 039 

P core megawatts - - 

P 
V 

megawatts 0. 059 0.075 0.095 

P     . out megawatts 0.38 1. 10 1.88 

Pin megawatts 0.65 1.61 2.80 

e    - Total 
S 

% 58.7 68.4 67. 1 

Ap psi 359 814 1310 

magnetic field, but otherwise the calculations proceed as before.    The ratios of P   and 
S 

P     for finite-to-infinite-length machines and the profile factors F„ are listed in m b ' m 
Table 18 for s =-0. 1, -0. 2, and -0. 3.    The efficiency before adding the other losses 
goes through a peak around s =-0. 2.    This is due primarily to the finite-length effect, 
which increases with smaller |s I.    F     also increases, but not as rapidly until|s( be- 
comes still smaller.    This shows the limitation on s and the efficiency; the efficiency 
cannot be made arbitrarily large as In the ideal model. 
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Table 18.    End and profile factors, and friction factors for medium-power generators. 

Factor s = -0. 1 -0.2 -0.3 

End Ps 0.5451 0. 7404 0.8333 

Pm 
0.6564 0.7925 0.8667 

Profile a 
0.00722 0.00762 0.00799 

Fm 
1.040 1.023 1.017 

" 070087 Friction OHD 0.009 0.0088 

MHD 0.012 0.0108 0.0106 

The power dissipations in the exciting winding, capacitors, and fluid are calcu- 

lated as in section 7.4, and the core loss is assumed to be negligible.    The OHD 

turbulent and MHD turbulent boundary-layer friction factors are listed in Table 18. 

The value of P   is less than 10% of P    , and the percentage decreases with increasing 

I si. 
The total efficiency is lowest for s = -0. 1 and climbs to a more reasonable figure 

with increasing )s| .    There is a peak, probably around s = -0. 24.    The peak total 

efficiency occurs at a higher slip than the peak limiting efficiency because the addi- 

tional losses do not increase as fast as the electromagnetic powers.    The efficiencies, 

both limiting and total, are less than those for the high-power machine, because of 

the lower R,- and increased end looses. For small RM the end effect for a short 
machine increases; thus a short machine with high efficiency may not be possible with- 

out compensation to reduce the end losses.    This rules out decreasing A. because the 

increased number of wavelengths in the machine is at least partially offset by the 

smaller RM and increased end effect. 
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VIII.   CONCLUDING REMARKS AND SUGGESTIONS 
FOR FURTHER STUDY 

8.1 CONCLUDING REMARKS 

The objective of this investigation was to provide a clear picture of the terminal 

properties of and power flow in the MHD induction machine.   The previous theory has 

been extended to include velocity profiles and finite machine length, the results have 

been carefully interpreted both physically and numerically, and an attempt has been 

made to clear up existing misconceptions regarding MHD induction machines.   The 

emphasis has been on generator properties and design because pump performance is 

less critical.   Also, it is easier to build and study the operation of experimental pumps 

in the kilowatt power range than experimental generators in the megawatt power range. 

The theory of the fluid-field interaction, including viscosity and ends, gives a defi- 

nite limited range for the dimensionless parameters s, RM, Q, K, and M where machine 

operation appears attractive.   This leads to restrictions on the fluid properties which 

eliminate plasmas from further consideration.   Liquid metals look practical for power 

generation, but additional study, including experiments, is required before a final 

assessment can be made. 

The numerical study of Section VII gives an idea of attainable performance based 

on several representative but nonoptimum calculations.   Efficiencies of around 80% 

were obtained for a high -power machine, which is an encouraging result for an initial 

investigation.   For a medium-power machine the efficiencies were over 10% lower, and 

this is, at best, marginally satisfactory for space-vehicle applications.   At lower power 

levels, the induction generator does not appear to be acceptable.   It may not be possible 

to make the dimensions small and still keep RM sufficiently large. 

8.2 THEORETICAL EXTENSIONS 

It is necessary to consider finite width before proceeding further because it could 

make the linear induction generator impractical if the effect on the efficiency is 

larger than expected.   This may be avoided by using an annular geometry, but this 

introduces flow and cooling problems.   Finite machine width has been treated else- 
75 where^      but a better model is needed.   In an actual machine, the coils will probably 

extend past the edges of the channel to make full use of the fluid with only a slight 

increase in the already small coil loss.   Thus, the model should consist of a fluid of 

finite width flowing between exciting plates with z-independent currents.   The reaction 

field depends on z, but the applied field is independent of the z-coordinate. 

More attention must be paid to the constructional details of the exciting system, 

probably by using the empirical methods developed for rotating machinery.   Methods of 

eliminating the channel wall, which was shown to be highly detrimental to the operation, 

will also have to be considered. 
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Concurrently, the preliminary analysis of Section VII should be developed into 

a proper design procedure.   Except for the lack of better information about the fluid 

behavior and the lack of experimental results, the necessary information is available 

for this purpose.   It is possible to write one complete program to perform all of the 

analysis, but this has not yet been done. 

There is still much room for theoretical investigations of the fluid behavior, but 

the next phase of the study of liquid-metal flows is primarily experimental in character. 

The turbulent boundary-layer analysis can be extended when experimental MHD profiles 

are available, and the empirical and random-theory methods of analysis may be useful 

(see Harris      and Poduska    ).   The whole area of compressible fluids and plasmas has 

been neglected here as not of interest for a practical machine, but it is an interesting 

and complex theoretical problem. 

8.3   EXPERIMENTAL EXTENSIONS 

There is a pressing need for more experimental investigation of both DC and 

induction-coupled turbulent MHD flows.   There is no available information on the 

velocity profiles needed for machine evaluation, and the few friction-factor measure- 

ments available at present are not sufficient by themselves to separate out viscous 
2 and circulating-current I R contributions.   Measurements at the larger values of R 

and M envisioned for a practial machine are non-existent.   The turbulent boundary- 

layer analysis should be checked experimentally to see if the OHD and MHD friction 

factors cross, and the theory should be redone using the experimental MHD velocity 

profile.   Measurements of the location of the laminar-to-turbulent transition for 

induction-coupled flows are also needed.   This will be more complicated than in the 

DC case, and will probably depend on a and w in addition to R   and M.   The lack of 

better fluid information makes design difficult because viscous losses and profile 

effects are two of the biggest and least well-known losses in the machine. 
28 An experimental induction machine is presently being tested by Porter     to 

evaluate the theoretical work.   Additional well-designed test models will be necessary 

for further comparison before any consideration is given to the possibility of con- 

structing a full-scale power-generation system. 
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APPENDIX A 

Continuity of the Tangential Electric Field in MHD Machines 

In the analysis of some models for an MHD machine it is possible to obtain a 

discontinuity in the tangential electric field across a boundary.   This apparent violation 

of Maxwell's equations is due to the use of a model where current would normally flow 

across a boundary, but is constrained not to by conditions specified in the problem 

statement; for example, between two materials of different electrical conductivity in 

direct contact.   This situation occurs in the MHD induction machine without the thin 

insulating strips to prevent current in the y-direction.   The addition of the insulating 

strips, required by the problem statement, explains the source of the discontinuity.   As 

the thickness of a strip approaches zero, it is found to support a tapered dipole charge 

layer (doable layer) across which, as shown by Stratton,      there is a discontinuity in 

the tangential electric field of 

E+ - "E.  =  - 4"   VT, (A.l) 
o 

which is equivalent to the discontinuity 

0+   - </>.  = T/CO (A.2) 

in the scalar potential.   Here, E   is the electric field on the positive side of the dipole 

layer, and T is the dipole surface density.   The normal electric field is continuous 

across a dipole layer. 

Another view of the source of the discontinuity is provided by the mathematical 

approach used in MHD.   The fields are determined from Maxwell's equations without 

the equation for V '  E, to be consistent with neglecting displacement currents.   The 

volume charge density is zero; but surface charges, or dipole layers in the limit of 

thin strips, may be required to satisfy the boundary conditions.   The difficulty is not 

that the solution is incorrect, but that it is incomplete because the required charge 

densities have not been included.   The insulator is needed on the boundary to prevent 

current flow across it and to support the dipole layer. 

As an example, consider the MHD induction machine with a constant fluid velocity. 

The model to be analyzed, Fig. A-l, differs from that of Chapter 3 in replacing the thin 

insulating and exciting strips by sheets of finite thickness to avoid discontinuities in the 

fields.   The excitation becomes a current density, 

7   =T   -rr     cos (cut  - kx), (A.3) e        z     b 
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Fig. A-l.   The Model 

where b is the exciting-layer thickness.   For simplicity the fluid, insulators, sind 

exciting sheets are assumed to have the same permeability  u . 

It is not necessary to obtain the complete electromagnetic field solution with all 

the arbitrary constants.   Attention is confined to the fluid, the exciting sheets, and the 

pair of insulators separating them.   This part of the total solution is determined in 

terms of the magnetic field at the center of the channel, and then the limit taken as the 

insulator thickness d approaches zero to show the discontinuity in the tangential electric 

field across the insulator and the dipole layer on the insulator.   This demonstrates the 

source of the discontinuity but reduces the mathematical complexity.   A similar dis- 

continuity also exists across the outer pair of insulators. 

The fields are determined from Eqs, 8-11,   Equation 11 is required in the insulators 

because Eq. 8 does not constrain 0 to be zero.   The equations are linear, so that all 

variables must possess the same e*'        ' dependence as the excitation.   Again the 

complex amplitudes are used, and the vector potential and current are in the z-direction 

and independent of z.   The solution retaining all three components of the vector potential, 

analogous to the case treated in Appendix B, does not change the conclusions. 
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The potentials in the fluid and insulators are: 

A, = A.,   cosh yky, (A,4) 

0f = 0, (A.5) 

A.  = A.,   cosh ky + A.9 sinh ky, (A.6) 

and 

^i  =  ^il   Z  + ^13^ cosh ky + ^i2 z +  ^14^  sinh ky' ^'^ 

The symmetric excitation forces A. to be symmetric.   The form of the coefficients for 

</>. is chosen because any measurable quantity must either be independent of or linear 

in z due to the infinite length in the z-direction.   The fields represented by these 

potentials are obtained from Eqs. 6 and 7. 

In the exciting sheets the current is constrained by the source.   The vector potential, 

a function of y for the finite thickness, is found either from 

2 ^om 

V   2e   =   "   ~V' (A-8) 

or by combining Eqs. 5a and 5b to obtain 

1     ^^        M0NI 

The result is 

M NI 
A    =   ■  ,*■     + A  .   cosh ky + A „ sinh ky. (A, 10) 

The z-component of the electric field is constrained to be 

E       =   JS- (A.ll) ez        a b 

by the current source, which is assumed to be located at infinity rather than distributed 

in the winding as in section 2.3.   The scalar potential, using Eq. 7, is 

NI             J 'Llo(Tevs 
^e = oE z(1 + TT-^ " J^^el cosh ky + Ae2 sinh k^' (A-12) 
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The complex coefficients are calculated from the boundary conditions on the 

electric and magnetic fields in terms of A.., the magnetic field at the center of the 

channel, which remains finite.   A.- could be determined in terms of the excitation and 

machine parameters, but only with considerable difficulty.   At y = a and y = g both 

components of the magnetic field and the tangential electric field are continuous.   From 

these conditions, 

Ail   =  F1  Afl, (A.13) 

AL2  -  F2 Afl, (A.14) 

■—£■ - jo) Afl {Fl cosh kg + F2 sinh kg) 

'Kl= cosh kg - coth a sinhkg ' (A. 15) 

^'2 =  "^il coiil a ' (A.16) 

M0NI 
Ael   =  Fl  Afl  " ~^~    coshkg' <A17> 
                       k b 

AkNI 
A 2 = F2 A.    + -rp-   sinh kg, (A. 18) 
                      k b 

and 0.o and 0.. are zero; where 

F1  = cosh ya cosh a - y sinh ya sinh a, (A. 19) 

and 

F2  = y sinh ya cosh a - cosh yet sinh a, (A.20) 

are independent of the insulating-strip thickness d. 

The change in the z component of the electric field across the insulator, 

AEz  = Ez(g) - Ez(a)  =   J^- + jw Afl cosh ya, (A.21) 

is independent of d except for the variation of A.^.   The discontinuity remains in the 

limit as d becomes zero, provided that the insulator is not removed,   so that the 

tangential electric field can be discontinuous across an insulating strip of infinitesimal 

thickness.   There is a similar discontinuity in the x component of the electric field. 

Further insight is obtained by examination of the fields inside the insulator and 

the surface charge densities on the insulator as functions of d.   For small d, kd <<1, 

the electric field is approximately 
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-7z jw Afl(F1 cosh ky + F2 sinh ky). (A. 22) 

where 

0il = sin^d
Qf   [ Nl/Ogb + jw Afl (cosh y a + ykd sinh ya)]. (A.23) 

In the limit as d approaches zero, the x and z components remain finite and become the 

required steps across the insulator.   The y component, however, becomes infinite, so 

that the line integral of the conservativp electric field around any closed path is zero. 

The surface charge densities on the two interfaces, from the discontinuity in the 

normal electric field, are 

t   kz 0.. 

^ = a>= "liHhif - (A-24) 

and 

o(y = g)  = e  kz 0., (sinh kg   - coth a cosh kg) 

+ ju) e     kz A», (F. sinh kg + F« cosh kg). (A.25) 

As d approaches zero the first term of a(y = g) becomes equal in magnitude but opposite 

in sign to g(y = a), and both vary as-r, representing a tapered dipole layer.   The second 

term of a(y = g) accounts for the discontinuity in the normal electric field across the 

insulator. 

The discussion above shows that the discontinuity in the tangential electric field 

across the insulators is consistent with Maxwell's equations, provided that a tapered 

dipole layer is included as part of the solution. It is the presence of the dipole layer 

that enables all boundary conditions to be satisfied. 
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APPENDIX B 

Field Solution Retaining all Components of the Vector Potential 

In section 2. 2 the vector potential was assumed to have only a z-component be- 

cause of the excitation and geometry.   Now the same electromagnetic fields are ob- 

tained without this assumption from different potentials.   The vector and scalar potentials 

are defined by Eqs.  6 and 7: 

"B = v X'A 

and 

The gradient of any scalar ^ can be substracted from A to define a new vector po- 

tential 

A*'     A - V * (B, 1) 

without changing B,    Eq, 2. 2. 10 then requires a new scalar potential 

0'=0+|f* (B.2) 

This method of defining a new set of potentials, called a gauge transformation, leaves 
78 

the fields invariant. 

The derivation retaining all components of the vector potential for a constant fluid 

velocity differs little from the solution of section 3. 1 and will not be repeated in full 
—» 

detail.    The model used is the same, but V .   A is no longer zero, so that Eqs.  8, 9, 

and 11 are required.    The potentials satisfying Eqs.  9 and 11 are determined, constraint 

(8) is applied to the coefficients, and the fields are calculated and compared with the 

results of section 3. 1.    Although done only for the fluid, the same procedure can be 

applied to all regions. 

The complex amplitude of the scalar potential in the fluid, from Eq.  11^ is 

0f =  {<t>lz+ 03)   cosh /3ky + (02 z + 04) sinh ßky. (B. 3) 

where 

/32 = l+jRM. (B.4) 
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The form of the z-dependence is chosen to make all measurable quantities either in- 

dependent of z or linear in z, as required for the infinite machine. 

Working with components for the vector potential, the equation for A.   is identical 

to that for 0., so that 

Afx= (Axl z + Ax3)   COsh ßky + (Ax2 z + Ax4) Sinh ßky ' (B- 5) 

For the y and z-components there is both a natural response and a forced response due 

to Af .    Thus, 

Afy = (Ayl z + Ay3) cosh y ky + (Ay2 z + Ay4) sinh y ky 

+ iß[(\l z + AX3) sinh /3ky + (Ax2 z + Ax4) cosh /3kyJ . 

and 

Afz = Azl cosh rky + Az2 sinh y ky +jj-rAxl cosh ßky + Ax2 sinh /3kyJ , (B. 7) 

where A„   must be independent of z because the magnetic field cannot depend on z. 

Equation 8 now provides constraints on the potentials.    Equating the-coefficients 

of each y and z-variation to zero gives 

0. = v   A  .   , (B.8) 
_i      s _2Ü 

and 

Ay. = 0   . (B. 9) 

where i = 1 through 4. 

From these potentials, the electromagnetic fields are 

Bfx = y k (Azl sinh y ky + Az2 cosh y ky) , (B. lOx) 

B     = jk (Azl cosh y ky + Az2 sinh y ky) , (B. lOy) 

and 

Efz = ja> (Azl coshyky + Az2 sinhyky)   . (B. 11) 
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The remaining components are zero.    The A . coefficients do not appear in the fields; 

they represent a natural response which cannot be measured.   Comparison with the 

potentials in the fluid of section 3, 1 before application of the boundary conditions, 

Af = iz (Af 1 cosh y ky + Af2 sinh y ky)   , (3. 1. 8) 

and 

0f=O, (2.2.15) 

shows that the identical fields are obtained. 

The case in which v is zero, as in the core, is slightly different.   The three compo- 

nents of the vector potential are not coupled, and all have the same spatial dependence. 

Applying Eq.  8 and making the magnetic field independent of z and the z-component zero 

reduces this to the previous results. 

The gauge transformation is defined by Eqs.  B. 1 and B. 2,   Consider the potentials 

of section 3. 1 to be the umprimed set and the potentials derived here to be the primed 

set.    Then 

- = Tk [(^Ll Z + Ax3) COsh ßky+ (Ax2 z + Ax4) sinh ßky]' (B- 12) 

and this is a particular gauge transformation. 
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APPENDIX C 

Exciting Winding of Finite Thickness 

Limitations on the current density in the exciting winding of a practical MHD induc- 

tion machine may result in a winding whose thickness b is not small compared to the 

channel half-width a.    This degrades the performance because, for the same total 

exciting current, the fluid magnetic field and power density are decreased. The degrading 

factor for the magnetic field is calculated and its effect on performance shown.   The 

terminal voltage is found to possess an additional term that can be identified as a leakage 

reactance. 

The analysis is the same as in section 3. 1, except that the exciting sheet thickness 

b is not small.    The model of Fig. 8 is used with an exciting current density 

-♦      —»    NT 
Je = iz   TCOS (a,t " ^   ' (C- ^ 

The vector potentials in the fluid and core, as before, are 

Af = Afl cosh yky    for y < a , (C. 2) 

and 

Ac = Acl   e"ÖkW     fory>a + b, (C. 3) 

with A., and A   . to be determined.    The vector potential in the exciting plates is 

M„NI 
A    = ~—— + A   . cosh ky + A 9 sinh ky , (A. 10) 

using the results of Appendix A. 

The boundary conditions on the magnetic field at y = a and y = a + b give four 

equations to solve for the four unknown constants.    The result for the potential in the 

field is 

MfNI 

fl        My sinh ya + K Ö cosh ya) FD   , (C.4) 

where the term in brackets is the potential when b is zero, and F., is the derating factor 

due to the finite width. 
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sinh a    + OK   (cosh a    - 1) 
F^ = S TT^r- (C. 5) D 

ae 

(ö K y tanh ya +  »*' 
cosh a    + sinh a   ~7—I—r T—rT* e e   (y tanh ya + Kö ) 

Here, 

ae = bk, (C. 6) 

and 

^e 

Normally /xf = /Lt   , simplifying Eq. C. 5.    Unless a    =0, Fp)<  1. 

Since the vector potential in the fluid is decreased by Fp., all electromagnetic 

powers are decreased by FD Fp, and the dependence of Fp. F^. on a    for a given machine 

is of major importance. If Fp. is small, the power level of the machine will be much 

less than the theory of Section III predicts. 

For the special cases of an air core and an ideal iron core Fp. can be simplified 

to 

sinh a   + cosh a    - 1 
Fni =   Z    ITTZh „    + ^g

ev, ^   v       forif = 1    , (C.8) Dl      a   (sinh a   + cosh a  ) 

and 

sinh a 
FDO"  sinh a for* = 0    ' (C-9) 

a (cosh oi   + —7—z—   ^ e e    7 tanh ya 

both for /if = M    anc' no core loss.    The former depends only on a   while Fp.^. for 

ya and a   both much less than one is a function of the ratio of b to a.    They are 

plotted in Fig. C-l for several values of a.   As a decreases, Fp.^ drops off much 

faster with increasing a  . 

The terminal voltage calculation is more complex for a winding of finite width 

because the source voltage per wire, AV   of section 2. 3, is a function of both x and y. s 
A model for the coil is reouired to take care of this.    Assume the coil has a two- 

(cos lex I \    and N- per unit length 
sin kxj 

in the x and y directions for the two phases.    There are N.N™ turns per unit area, 

and the current density is 
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Fig.  C-l.   FpjFj-j as a function of a    for four sets of machine parameters. 

J   = i   N-N-Icos (tot - kx) e      z     1   2 (C. la) 

for currents of l|c?s ^1 Isin cotr 
x-direction is ■' 

per turn.   The total number of turns per unit length in the 

N = NlN2 b. (C. 10) 

where N corresponds to the previous turns density. 

The terminal voltage is the sum of the voltage across each turn. 

V = 2  / x + X  /a + bU(x>y)eJWt 
a       I  

N2N1 cos kx dydx (C 11) 

where N. and N2 are assumed large so that the sum can be replaced by an integral. 

The result is 

w ju 2 JT cN I sinh a 

X=ReI + J—TX  (1--5—^ k"b 

a>2 JTCN 
sinh ae       ßeY 

+ j =-^  Af 1 cosh ya -j ~   + ~—    tanh ya 
(cosh a   - 1)  e 

a* 

(C. 12) 

132 



Comparison with section 3. 2 shows that the first term is the resistance of the coil, and 
the last term represents the interaction with the fluid.    The second term, with no 
previous equivalent, is a leakage reactance caused by some of the magnetic field not 

41 penetrating into the fluid.        The last term is decreased by Fp. times the expression 

in brackets.    The ratio of the real part of this term to that when a    - 0,  or equivalently 
the resistance ratio, is equal to FrjFr) when there is no core loss. 

The coil thickness will be important in air-core machines because a large excitation 
current is required for a reasonable power level.    The problem is sharply reduced for 

an iron core by placing the winding in slots, as is conventionally done for rotating 
machines.    This eliminates thickness effects completely, provided the iron teeth do 
not saturate, except that leakage still occurs. 
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APPENDIX D 

Viscous Power Loss 

The viscous power loss will be important at the velocities and Reynolds numbers 

expected for a practical MHD induction machine, and the flow will probably be turbu- 

lent.    However, the viscous power must be small compared to the power output in 

order to obtain a reasonable efficiency.    The viscous loss is first found for laminar 

flow, where analytical expressions are available, and then the extension to turbulent 

flow is discussed.    It is shown that the use of a friction factor for MHD flows, as is 

done for OHD (ordinary hydrodynamics) flows, may lead to erroneous results for the 

viscous power loss. 

The mechanical input power to the fluid volume of Fig. D-l for a flow independent 

of x and z is 

Pin = -2c /a   Apvdy , (D. 1) 

where Ap is the pressure difference across the volume, defined as positive if p increases 

with x, and c is the depth in the z-direction.    If Ap is independent of y, this becomes 

Pin = -QAP    . (D. la) 

where 

Q = 2acv (D.2) 

is the volume flow rate, and v is the average velocity. 

J- 
J\rr 

y = a i  

v       p(2ac) 

y = -a 

J\to\ 

ffedxdydzm     !JP+Ap)(2ac) 

Fig.  D-l.   Forces acting on a fluid volume extending across the channel of depth c. 
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D. 1   LAMINAR FLOW 

The viscous power loss can be evaluated analytically for laminar flow.    The con- 

d2v tribution to the pressure gradient due to viscosity, from Eq.  5g, is TJ —s-    for no 

x-dependence, but ^ 

.2 
dP = -77V ^-J- (D.3) 

dy 

is not the  viscous power density, as  is  shown below. 

Consider the  small fluid volume of Fig.  D-2.     The forces acting on the volume 

are pressure, the  fluid shear stress on the top and bottom surfaces, 

T   -   V^    . (D.4) 

and the body force density f .    For no x and z-dependence the mechanical power input 

is 

AP.n  =   -[p(x +^   , y) - p(x --^   . y)] v(y)AyAz 

+     [T(y + ^ )v(y+^)-T(y-^)v(y-^)]AxAi 

+   fe (y)v(y) AxAyAz, (D. 5) 

Dividing this by the volume and taking the limit as the volume shrinks to a point gives 

the input power density, 

op , , 
dP.    =   _v -s-   +   T 4^- + v 5^ + f v . (D. 6) in 9x dy        ay        e ' 

This must be the viscous power as there is no other mechanism for dissipating 

mechanical power.    Writing the force balance equation for the fluid volume gives 

9p ,_ 

9x        dy e   ' ' 

and Eq.  D. 6 becomes 

jTi       ^   dv   _       /dv .2 /r.  0. 
dPv = T   d^   '  ??(d^)     ' (D-8) 
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p(x - —«y) P(x + ^-, y) 

Fig. D-2.   Forcesand stress acting on an elemental volume of fluid centered at (x,y,z). 

The total viscous power loss in a length £ of the channel is 

Pv = 2c^ /    (HJ,2  dy (D. 9) 

This could be extended to the general three-dimensional case by including the additional 
terms. 

The error in Eq. D. 3 is that some of the power carried into the volume due to the 
viscous pressure gradient flows out across the sides due to the viscous shear stress. 
This does not occur if the viscous power is integrated over the whole channel because 
the velocity is zero at the walls.    In fact. 

a        ,z 
P    = -2c£ rj j     v —£ dy 

o        dy 
(D. 9a) 

is identical to Eq. D. 9 for this case only, as is seen if Eq. D. 9a is integrated by parts, 
although conceptually it is in error. 

The viscous power loss for OHD channel flow, with the parabolic profile 

v^ir.-(|)2j. (D. 10) 

is 

— 2 p    _  6c f 77 V    M 
v "      a (D. 11) 
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For the Hartmann profile, Eq.   137, the viscous loss is 

M  „       jtanh M - —     9 
c£7jv    M     cosh   M 

] 

[i 
tanh M 

M ■]' 

(D. 12) 

As M approaches zero this reduces to Eq. D. 11, while for large M it becomes 

 2 
p    =  c f T?V    M 

v a (D. 12a) 

The MHD viscous loss is always greater than the OHD viscous loss because of the 

sharper velocity gradient near the wall.   Eq, D. 12 and the asymptote, Eq. D. 12a, are 

plotted in Fig. D-3. 

*v 

I   I   I   I   I   I 
10 20      M        30 40 50 

Fig. D-3.    Viscous power loss for Hartmann profile as a function of M. 

D. 2   WALL SHEAR STRESS 

It is convenient in OHD flow problems to work in terms of the wall shear stress 

To- ^dy y = a 
(D. 13) 

Writing the force balance equation for the volume of Fig. D-l gives 

2ac Ap = -2c JHTO j +   /     f  d».%dz   , (D. 14) 
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where Ap is independent of y, f   is the body force density, and  T I is used to avoid sign 

confusion.    The viscous power loss, using only the contribution to Ap due to the wall 

shear stress,  is 

P      =   2cje T    v (D. 15) 
VT O ' 

from Eq. D. la, if the viscous pressure difference Ap   is constant across the channel. 

This is valid for OHD flows with no body forces, but is not correct for MHD flows 

because f   varies across the channel, and, since the sum is constant, Ap   must also e v 
vary.   Equation D. 15 is then the product of the averages, which is different from the 

average of the product. 

This is easily shown for Hartmann flow.    The wall shear stress is 

T nvM        tanh M m  ie\ 
-h?-    ^ 4o»V, Alt-,    > tu- 16) o a     r,     tanh M r.     tanh Mi  ' 

L1 --m^l 

and the viscous loss from Eq. D. 15 is 

—o 
p     . 2cjgT;v M tanh M /n .,. 

vT "      a f.     tanh M ]      • »M. i U 
L- M      J 

For small M this reduces to Eq. D. 11 for OHD flow, but for large M it becomes 

P    = 2ciin~2M (D 17a) 
VT a ' ' 

which is twice the correct asymptote, Eq. D. 12a.    The wall shear stress can be used 

to obtain the average viscous pressure drop, but not the viscous power loss in MHD 

flows. 

D. 3   FRICTION FACTOR 

In fluid mechanics a friction factor f defined by 

8T 
f = -n% (D. 18) 

pv 

is conventionally used to express the pressure drop due to viscosity as 

-2 

AP  = finpv    ; (D.19) 

138 



where 

n        ^ (cross-section area of flow) .^ «QV 
h                 (wetted perimeter)         " ' \   •     I 

the hydraulic diameter for a channel of arbitrary cross section, is defined so that f is 

independent of the channel shape for turbulent flow. This is not true for laminar flow, 

where 

fr = -^ (D.21r) 

for a round pipe, and 

VTT (D
-
21

P) 

for flow between two parallel plates.    Here, 

Re = -^ (D. 22) 

is the Reynolds number.    The friction factor for Hartmann flow between two parallel 

plates is 

f    =   32M tanh M (D „ .. 
'H      •" Re    n     tanh Ml     * UA .ih) n     tanh M] 

L1 '    M      J 

This reduces to Eq. D. 21p as M approaches zero. 

D. 4   TURBULENT FLOW 

The friction factor is introduced because it is convenient for turbulent flow, where 

analytical expressions for the viscous pressure drop and power loss are not available. 

It has been measured experimentally as a function of R   for various conditions, and both 

graphs and approximate equations are available.    For OHD flows this gives the pressure 

drop and the power loss.    Unfortunately, it gives the correct average pressure drop 

but the wrong viscous power loss for MHD flows because f is based on the wall shear 

stress.    This leaves no method of calculating the viscous power loss for turbulent 

MHD flows until further experimental measurements are made.   Since the friction 

factor for laminar flow gives a viscous loss of the correct order of magnitude but high 

by a factor of about 2, the friction factor can be used for turbulent flows to give order 
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of magnitude results.    This is used as the best, and only, alternative.   It is valid only 

for small MHD forces, which is not of interest for energy conversion. 
79 

Using experimental data, the friction factor for OHD turbulent flow is 

jf- =  2.0 1og10 (RyT)   -0.8 (D.23) 

for smooth walls, where the flow is turbulent for R   greater than about 2000.    It is 

usually more convenient to use a graph, such as that given by Schlichting,      by Moody, 

or in section 5. 5.    Sufficient experimental measurements are available so that this 

relation is well established. 

For turbulent MHD flows only a limited amount of experimental data is aw'"lable, 

all for DC magnetic fields.     '    '       Harris     obtained an analytical expression for f 

based on some of this data, 

vr Re    vrRe 
•^ 4. 0 log      (-rjr-^ ) ^     -2.772. (D.24) 

M^ ^p ^9 
valid for/y "   > 0. 053.    The flow is turbulent for -rp >  900.        These measurements 

made iw ülatinctiön between the pressure drop due to viscosity and that due to circu- 

lating currents, both are included in f.    Since the circulating-current losses are already 

included in P    and P   for the induction machine, this friction factor is of limited value m r 
for the present investigation. Friction factors are studied in section 5. 5 using turbu- 

lent boundary-layer theory, and the results are compared with Eqs. D, 21h, D. 23, and 

D.24 in Figs.  44-46. 

Before leaving this discussion of turbulent flow and losses, it is interesting to 

compare the OHD turbulent and MHD laminar profiles, as shown in Figs.  39 and 27 and 

discussed in section 5. 1,    Both have the same characteristic shape, flat in the center 

of the channel with sharp velocity gradients near the walls, and both have higher viscous 

loss than OHD laminar flow because of these large gradients.    The transition from MHD 

laminar to MHD turbulent flow and the addition of turbulent mixing will have little effect 

on the profile in the center of the channel, which is already relatively flat.    It is not 

clear what the transition will do to the profile shape near the wall, which is already 

steep, and to the viscous loss.   The viscous loss will be higher than for MHD laminar 

flow, but not necessarily higher than for OHD turbulent flow.    The turbulent boundary- 

layer calculations of section 5. 5, if valid, show that f is larger for MHD turbulent flow 

than for OHD turbulent flow at small values of R , but smaller at large values of R . e 0 e 
Many questions remain about turbulent MHD flows.   Careful experimental measure- 

ments of losses and velocity profiles are required before theoretical predictions can be 

made with reasonable accuracy. 
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APPENDIX E 

Numerical Methods 

The numerical methods used in Section IV to solve the differential equations and 

evaluate the integrals are presented.   Several techniques were tried for each, and the 

best selected from tests on the electromagnetic fields and powers for a constant fluid 

velocity, for which analytical solutions are known. 

E.l  DIFFERENTIAL EQUATIONS 

The equation to be solved is a second-order differential equation of the form 

2 
^-| + A(y) ^+  B(y) F =  C(y) , (E.l) 
dy y 

where A(y), B(y), and C(y) may be constants or zero, and all may be complex numbers. 

Two fundamental approaches are available: 

1. Break Eq. E.l into two coupled first-order equations, 

§ - DF, (E.2) 

and 

^P^ =   -A(y) DF - B(y) F + C(y)f (E.3) 

and determine both F and DF together. 

2, Solve the second-order equation directly by using special techniques available 

when the first derivative is not present, A(y) = 0. This gives F, and DF, if required, 

is then calculated by numerical differentiation. 

The six methods tested are outlined below along with the equations, error estimates, 

and relevant comments.   Only the last method uses the second approach.   After the 

presentation of all six their results are compared.   These methods were selected as 

being the simplest ones with reasonable accuracy, and as they gave good results, more 
82 

complex methods were not required.   For a more detailed discussion see Hildebrand. 

Method 1 

Euler's method using the equation 

Fntl  = Fn + hF; + ^   F" <*> ' (E-4) 
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where the subscript n denotes the value of y, the prime the derivative with respect to 

y, and h is the constant point spacing, yn+i - y».   The last term is the truncation 
error due to neglecting higher order terms; double prime indicates the second deriva- 
tive, and | is some value of y between the largest and smallest values in the equation, 
y    . and y   in this case.   This method is self-starting, only the initial value is needed, 
and is the simplest but least accurate. 

Method 2 

A modification of method one using 

h3 

Fn+1   = Fn-1 + 2hFk +    3    F",   ^ (E-5) 

It is considerably more accurate and gives appreciably better results, but may be 
unstable, as discussed later.   It is not self-starting; the initial value plus one additional 
point is needed. 

Method 3 

Adams method retaining first differences, 

Fn+1  = Fn +T(3FA " Fk~l} + 5 4 FW <*>• <ß-§) 

The accuracy is about the same as in method 2, but it requires one additional term in 
the equations.   It is also not self-starting. 

Methgd 4 

An iterative procedure using method 2 as the initial predictor and 

Fn+1   = Fn-1 + f(F;+l 
+ 4FA + ^-l) -l£ FV W (E-7> 

to iterate, where F (i;) is the fifth derivative. This has a smaller error because it 
uses third differences, but it may be unstable. It generally requires an initial pre- 

diction to obtain F'. i. and can be used alone only in special cases. Two iterations 
were usually sufficient. 

Method 5 

A second iterative procedure using method 3 as the initial predictor and 

Fn+i 
= Fn+ il(5FA+i

+ 8FA - FA.i) - lrFiv <*> (E-8> 

to iterate. This is not quite as accurate as method 4, although it has the same number 
of terms, because it uses only second differences. Method 4 is preferable except when 
unstable. 

142 



Method 6 

For the special case of no first derivative, A(y) = 0, the second-order differential 

equation can be solved directly by using 

Fn+1   =  2Fn " Fn-1 + T^ (Fn+l  
+  10Fn + K-S "Tiö^ ^ (E-9) 

Substituting Eq. E.l in Eq. E.9 and simplifying gives 

2F  (1 - £j h2B ) - F     ,(1 +-1™  B    J+-TIT (C ^.^ + IOC  +C     ,). „                n        12         n         n-1         12     n-1      12     n+1            n     n-1 /,-, 1nv Fn+1 = -2  (E.10) 

This has the smallest truncation error and is the easiest to use because there are no 

iterations, but it requires a numerical differentiation for DF, which is to be avoided if 
83 at all possible.   '    It is self-starting using symmetry, and is used to start the other 

methods. 

The method of starting the solutions requires special comment.   The initial values 

F. and DF.. are specified, but all methods except the first also require Fg and DF«. 

A series, as normally used, is not convenient because the coefficients may be known 

only at points, necessitating numerical differentiation.   Symmetry about y = 0 can be 

used to solve Eq. E.9, giving 

,.2             .2 
F,  (1   -   -^ Bj+^r (C9 + 5 CJ 

F2  = -i ii-yi ii ? L (E.ll) 
(1  +^-B2) 

for the case when A is zero. This is used to start all methods because now DF„ is 

easily obtained. Using any of the other methods with symmetry is not practical for 

finding F«. 

The six methods outlined were tested on Eq. 127 for the vector potential in the 

fluid with a constant fluid velocity since the exact solution is known, Eq. 41.   The results 

sire given in Table E.l for several values of s, RM, and a.   The core properties and 

boundary conditions enter only into the constants.   The number of figures of accuracy, 

i.e., the maximum number of correct digits after rounding, is given for the real and 

imaginary parts of F and DF at y* = 1, which is more convenient for comparison 

purposes than numerical values.   The computer uses 8 digits, or 16 with double- 

precision.   The additional accuracy of double-precision was not required in solving 

Eq. 127, and was not tried because then the complex statements could not be used, 

which would result in a vastly more complicated program.   It was used for the velocity 

profile solutions, as described in section 4.5, where the numbers are real and the 

additional accuracy was needed. 
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Table E.l   Numerical solution tests of Eq. 127. 

Number of Digits of 
Accuracy at y =  1. 

s RM 
a          No, Points Method Re(F) Im(F) Re(DF) Im(DF) 

1 0.1 100 1         | 
2 
3 
4 
5 
6 

4 
7 
6 
7 
6 
4 

2 
5 
5 
6 
4 
4 

6 
6 
6 
6 
6 
1 

4 
5 
5 
5 
5 
4 

100 0.1 100 1 
2 
3 
4 
5 
6 

1 
4 
3 
5 
5 
3 

1 
4 
4 
6 
6 
4 

1 
4 
4 
6 
6 
3 

2 
4 
4 
6 
6 
3 

100 0.1 1000 2 
4 
5 
6 

5 
5 
5 
2 

5 
5 
5 
2 

5 
5 
5 
1 

4 
4 
4 
2 

10 1 100 
2 
3 
4 
5 
6 

1 
2 
2 
6 
6 
5 

0 
2 
2 
6 
5 
4 

1 
3 
3 
6 
5 
4 

1 
3 
2 
6 
5 
3 

1 

10 1 1000 2 
4 
5 
6 

4 
6 
5 
3 

5 
5 
5 
2 

6 
6 
5 
3 

4 
5 
5 
1 

1U 10 100 1 
2 
3 
4 
5 
6 

0 
0 
0 
2 
1 
3 

0 
0 
0 
3 
1 
3 

0 
1 
0 
3 
1 
3 

0 
0 
0 
1 
0 
1 

10 10 1000 2 
4 
5 
6 

3 
5 
4 
3 

1 
4 
4 
3 

2 
5 
3 
3 

0 
3 
3 
2 

Method 1 is immediately discarded as being too inaccurate.   Methods two and 

three are about the same.   The most accurate is method four, which is used whenever 

possible.   Method 6 suffers from round-off error; the results improve as the number of 

points decreases for the small ya cases.   This could be eliminated by using double- 

precision, except for the problem of complex numbers.   One hundred or more points 

are required to pick up the sharp velocity variation at the walls, and for the solution 

of Eq. 128. 

If the solution of the differential equation is close to a decaying exponential, 

methods 2 and 4 are unstable; they generate parasitic solutions to the approximate 
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difference equation which grow and quickly swamp out the desired result.   In this case 

method 5 is substituted; it is only slightly poorer than method four, and is stable. 

E.2.    INTEGRATION 

The numerical evaluation of integrals is required for finding the powers and for 

calculating averages.   The integration methods tested are the Newton-Cotes two-point 

(trapezoidal rule), three-point (parabolic or Simpson's rule), and six-point formulas. 

The equations are 

and 

/ 

'n+1 

n 

/ 

yn+2 

n 

F(y)  = | (Fn + Fn+1)  - iL- F" «;), h^ 
12 

F(y)dy = ^ (Fn + 4Fn+1 + Fn+2)  - ^ FiV (*), 

(E.12) 

(E.13) 

yn+5 
/     F(y)dy 

n 
m   (19Fn + 75Fn+l 

+ 50Fn+2 
+ 50Fn+3 

+ 75Fn+4 

+ ^nW " T^ h7 ^ <*>' (E.14) 

using the same notation as in section E.l.   The last term in each equation is the error 

estimate.   These three formulas were selected because the choice of a convenient 

number of points, dictated by the differential equation solution, always gave a number 

divisible by 1, 2, and 5. 

Table E.2.   Numerical integration tests of Eq. 133, 100 Points. 

Number of Digits of Accuracy 

s RM a 2-point 3-point 6-point 

-1 1 0.01 
0.1 
1 

10 

6 
6 
4 
2 

6 
6 
6 
5 

6 
6 
5 
6 

-0.04 
-0.1 
-0.4 
-1.0 

-10.0 

25 1 4 
4 
3 
3 
2 

7 
6 
6 
6 
5 

7 
6 
6 
7 
5 

-0.04 
-0.1 
-0.4 
-1.0 

25 10 3 
2 
0 
1 

5 
4 
3 
3 

6 
5 
4 
3 
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The methods were tested by evaluating the integral for P , Eq. 133, with a constant 
fluid velocity.   The results are given in Table E.2 for several sets of parameters using 
the same method as in Table E.l, all for 100 points across the channel half-width. 
Except for y a small, the results became worse as the number of points was decreased. 
The six-point formula, Eq. E.14, was selected as the preferred method. 
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APPENDIX F 

Inverse Transform 

The calculation of A, (x, y) from the known transformed vector potential requires 

the evaluation of the inversion integral 

A  (x.y)   =   /      ^ A   (p. y)epkx   (& )   . (F. 1) 
-1 ''d-j'»    — 1 

where d is a constant determined by the region of convergence of A, (p, y).    The normal 

procedure of evaluating the integral ic to close the path with a semicircle {or other 

appropriate curve) of large radius, as shown in Fig.  F-l, resulting in a closed contour 

integral whose value is the sum of the residues of the poles inside the contour.    This is 

equal to the integral of Eq.  F. 1 only if the contribution from the semicircle is zero. 

The doubly infinite series of poles for A, (p, y) extends to infinity in both directions 

along the real axis, so that the semicircle must always cut the line of poles.    To see 

that the integral over the semicircle is zero, first make approximations for large i. 

P? *+-VL  . (F.2) 

and 

y » JP . (F. 3) 

Next choose a curve, not necessarily a semicircle although that is conceptually the 

easiest, such that the magnitude of p is large and the curve crosses the line of poles 

at 

U +- ) TT 
P = ±   —~       • (F.4) 

By choosing p (or i) sufficiently large, the integral along the curve can be made arbi- 

trarily small, approaching zero in the limit, and the inverse transform is thus the 

sum of the residues.    This type of problem arises in the study of heat conduction, and 
fifi 87 

is treated in more detail in the standard texts.     ' 

The choice of d is determined from the excitation and the natural response.    The 

transform for the exciting current, Eq.  201, requires Re {p} positive for the inverse 

transform to give the original function.   For the natural response, Re|p|must lie 
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Fig.  F-l.    Sketch of poles and contours for inverse transform. 

between the two 0-order roots.    For the net system response, it must lie in the joint 

region, between 0 and p   .    It makes no contribution to the integral except to determine 

the poles for a given region of space. 
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APPENDIX G 

Conducting Channel WalL" and Insulators of Finite Thickness 

The presence of conducting channel walls and insulation in addition to the fluid 

between the exciting coils will degrade the machine performance because of the cur- 

rents induced in the channel walls, which are a pure loss, and the increased air gap 

or reluctance of the magnetic circuit.    These have not been considered in the previous 

analysis because they are not fundamental to the induction machine, but their effect 

may be disastrous if not allowed for in constructing the machine. 

The model. Fig. G-l, differs from that analyzed in Section III by including channel 

walls and insulation of finite thickness a    and a. , respectively.    Only the slit-channel 

machine is of practical interest for a generator, so that attention is accordingly re- 

stricted to this case.    This avoids having to find solutions in four regions and then 

satisfy conditions at three boundaries, as in Appendices A and C.    For the slit-channel 

approximation, (a+a   +a.) k << 1, the magnetic field is completely transverse.    For 
W 1 

this case a. is the total insulation thickness, it makes no difference if some of it is 
i ' 

located between the wall and fluid, or core and excitation. The insulation may be either 

electrical or thermal, provided that it does not conduct electricity. The permeabilities 

of the fluid, wall, and insulation are taken to be that of free space. 

The slit-channel approximation rules out the use of the differential laws.    Instead, 

the integral form of Eq. 5a, 

c  ^ 
j J .  n da 
surf 

(G.l) 

is used to find either the magnetic field or the vector potential.    The magnetic field 

between the core sections is y-directed and independent of y, and the vector potential 

is a constant. 

?    z    1 (G.2) 

The form of the vector potential in the core. 

A    =RelT A  1e-ök^   J^t-^) 
c z   cl i, (G. 3) 

is unchanged.    From the continuity of the normal magnetic field at the edge of the core, 

öa. 
A      =   A- e cl 1 

1 (G.4) 
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y=a 

y=0 

f= -a 

^-x 

where 

Fig. G-l.    The Model. 

Q^ = (a+aw+a.)k (G.5) 

Solving for B and J in terms of the vector potential and integrating Eq. G. 1 along the 

dashed contour shown in Fig. G-l gives 

M0NI 

1    kp'^w^w+V6] 
(G.6) 

This is the simplest contour because the current in the core does not enter.    Equation 

G. 6 is similar to the approximate form of Eq. 41, with the addition of 

y     = 1 + j R ' w J Mw 
(G.7) 
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R Mw u   a    v ^o   w    s (G.8) 

a w a   k w (G. 9) 

a.   =   a.k (G.10) 

Defining a derating factor Fp. for the vector potential, as in Appendix C, gives 

M0NI 

k(y    a+KÖ) 
(G.ll) 

where the term in brackets is the potential without the walls and insulation, and 

D 1 + 2 + a. w        i 

y    a + KÖ 

(G.12) 

The power density and Hartmann number in the fluid are changed by Fp. FD provided 

NI is the same.    Plotting Fp. is not convenient because it depends on seven parameters: 

sR-,, RM   , RM , a, a   , a., and K.   For a practical set of generator parameters: 

sRM = -1, RMw = 10, since RMw is of the same size as RM, a=0. 1, aw = ai= j^, and 

K = 0; the result is FD = 0, 833 (1-j), and FD FD = 1. 388.    The field in the fluid may 

be larger with the walls for a generator because the induced currents in the walls and 

fluid are out of phase and partly cancel.    Unfortunately, the performance is not im- 

proved.    There is no similar effect for a pump. 

The machine performance is best indicated by the power flow. The mechanical 

power output P and the powers dissipated in the fluid and walls, P and P , calcu- 

lated from Eqs. 28 and 30, are 

m 

cn\v   k  A.A. 
 M

s      -^      as(l-s)RM (G. 13) 

2 * cnAv   k  A, A. s      1 1 
—K:  

2D 013   % (G. 14) 

and 

cnXv   k  A. A, p s      1 1 R 
w " p ■ aw"Mw (G.15) 
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The power supply to the machine by the excitation P   cannot be found from Poynting's 

Theorem due to the approximate solution.    However, 

p    = P     + P   + P (G. 16) 
s        m        r       w 

from conservation of energy, which gives 

2 * cnAv  k   A.A. 
Ps = W L-L   t« s «M + «w *MJ       • (G- 17) ^o 

Core loss, shown in Section VII to be negligible in practice, is not considered. 

The ratio of P   with to without the walls and insulation, denoted by Fp, and the 

efficiency determine the change in performance.    Two cases are distinguished, depending 

on whether the magnetic field, corresponding to saturation of the core, or the excitation 

NX is held constant.    The ratios, differentiated by subscripts B and I, are 

FpT, = 1 + -^-jMw   = ! f -*LJ!L        t (G< 18) 
PB asRM asfff ' 

where the second term is the ratio of the power dissipated in the walls to that supplied 

to the fluid; and 

FPI = (FDVFPB' (G'19) 

The walls may increase the magnetic field for a generator, F« FD > 1, but the wall 

loss decreases the output power for a generator, FpR <  1, and increases the input 

power for a pump, FpR >   1.    The efficiencies for either B or NI constant, always 

decreased, are 

eg = (j—)  FpB for s <  0 . (G. 20) 

and 

e,, = (V^") for s >  0 . (G.21) 
P       ePB 

For the practical parameters used to find Fj-., FpR = 0, and the power generated in the 

fluid just supplies the wall loss.    For a generator or pump where efficiency is im- 

portant. 
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«w1^ w 
as % 

a    o w   w 
as a f 

<<  1 <G.22) 

so that the wall loss does not dominate. 
This analysis throws a sobering light on the construction of a high-efficiency in- 

duction machine.    The primary problem is the conducting wall, the insulation has re- 
latively little effect.    Since most wall materials are good conductors, and since from 
the numbers of Section VII it will be very hard to make a    << a, it appears that the 
only solution is a machine without a channel wall.    This might be accomplished by using 
the core to provide structural strength and placing a thin thermal and electrical in- 
sulator between the fluid and core. 
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